
7 925274 75349

09>

CIRCUIT
CELLAR

®

w
w

w
.c

ir
c

u
it

c
e

lla
r

.c
o

m

T H E M A G A Z I N E F O R C O M P U T E R A P P L I C AT I O N S

$4.95 U.S. ($5.95 Canada)

DATA ACQUISITION
Intelligent Power Supply

High-Performance
Motor Control

Protect Your Embedded
Designs

I-Zip Data Acquisition

#206 September 2007

cover1.qxp 8/6/2007 12:08 PM Page 1

Announcing a complete hardware and software solution from NetBurner

The NetBurner MOD5234
E T H E R N E T C O R E M O D U L E w i t h e T P U

Product No. | MOD5234-100IR
Information and Sales | sales@netburner.com

Web | www.netburner.com
Telephone | 1-800-695-6828

2.0”

2.95”

NetBurner MOD5234 Ethernet Core Module Features

INDUSTRIAL TEMPERATURE RANGE

| –40°C to +85°C

PERFORMANCE AND MEMORY

| 32-Bit CPU | Freescale ColdFire MCF5234 147 Mhz
| 2MB Flash Memory | 8MB SDRAM

DEVICE CONNECTIVITY

| 10/100 Ethernet | 3 UARTs | 16-channel eTPU | I2C | SPI | CAN
| 47 Digital I/O | 16-bit Data Bus | SD/MMC Flash Card Support

Customize with NetBurner’s Royalty-free Software Suite

DEVELOPMENT SOFTWARE

| NB Eclipse IDE | Graphical Debugger | Deployment Tools | Examples

COMMUNICATION SOFTWARE

| TCP/IP Stack | HTTP Web Server | FTP | E-Mail | PPP | Flash File System

$99Only

Qty. 100

All hardware and software is included with the

NetBurner MOD5234 Development Kit for only $299!
The Development Kit features NetBurner’s Eclipse, an enterprise level professional
IDE that provides editing, downloading and debugging in one environment.
Order the MOD5234 Development Kit: Product No. NNDK-MOD5234-KIT

C2.qxp 5/31/2007 9:02 AM Page 1

mailto:sales@netburner.com
http://www.netburner.com

M
5

25
50

75
95

C
5

25
50

75
95

Y
5

25
50

75
95

K
5

25
50

75
95

M
Y

CY
CM

GET STARTED WITH PSoC NOW.

© 2007 Cypress Semiconductor Corporation. All rights reserved. PSoC is a registered trademark and PSoC Express is a trademark of Cypress Semiconductor Corporation. All other trademarks are properties of their respective owners.

Get PSoC®. Because change happens.
PSoC flexibility enables changes anytime: at concept, through
production, in the field. Specifications change constantly. Yet
pressures to differentiate, minimize costs, and speed time-to-market
remain the same. To stay ahead of the curve, you need flexibility,
programmability, and scalability. PSoC’s unique programmable
architecture delivers this and more. Futureproof your design; make
PSoC your agent of change.

PSoC delivers:
The configurability of an FPGA, the mixed-signal integration
of an ASIC, and the familiarity of an MCU.

Reusable IP, compatible device families and variable
resource options ensure you can optimize design efforts
and accommodate changes.

The industry’s first visual embedded design tool, PSoC Express™,
speeds design time, enabling you to generate a complete
design without writing a single line of code.

Download our “Change Happens” White Paper
and get 50% off a PSoC development kit:
www.cypress.com/changepaper

Download free PSoC Express™ visual embedded
software: www.cypress.com/changesoft

Request free PSoC device samples:
www.cypress.com/changechip

Free online training:
www.cypress.com/changetrain

Purchase PSoC development tools:
www.cypress.com/changetools

PSoC includes programmable analog and digital blocks, a fast MCU, flash
and SRAM memory, all in a compact package (as small as 3mm x 3mm).

Real
Mixed-Signal
Programmability.

1.qxp 3/2/2007 11:51 AM Page 1

http://www.cypress.com/changepaper
http://www.cypress.com/changesoft
http://www.cypress.com/changechip
http://www.cypress.com/changetrain
http://www.cypress.com/changetools

Link Instruments

www.Linkins4.com
Link Instruments (973) 808-8990

PC-Based Test Equipment

IO-3208A $750
IO-3232A $899
IO-3232B $1399

Digital Oscilloscopes

500MSa/s
1Mpts

DSO-8202 (200MSa,128K) $799
DSO-8502 (500MSa,1MPt) $950

Logic Analyzer &
Pattern GeneratorNEW! 3.2” x 3” x 0.65”

USB 2.0 Powered

Portable

• 2 Channel Digital Oscilloscope
• 500 MSa/s max single shot rate
• 1Mpt sample memory

250 MSa/S (Dual channel) 512 Kpts
500 MSa/S (Single channel) 1 Mpts

• Only 9 oz and 7” x 3.5” x 1.5”
• Portable and Battery powered
• USB 2.0
• FFT Spectrum Analyzer

• Logic Analyzer (32 channels)
• Pattern Generator (up to 32 channels)
• up to 400 MSa/s
• Variable Threshold
• 2 External Clocks
• SPI output and disassembly
• I2C output and disassembly
•up to 2Msamples/ch

2.qxp 5/31/2007 9:59 AM Page 1

http://www.Linkins4.com

Drop-in Replacement for LCD Modules
The new family of U-Version modules is compact, low power and lower in cost with a

custom designed chip. This new VFD technology has an 8 and 4 bit parallel interface

and enables the replacement of LCD's with Noritake U-Version VFD modules.

UPGRADE
NOW...

Brightest Display
Widest Viewing Angles

Widest Temperature Range
Fits Right In

No Programming Change
Low Cost

U
-V

ER
SI

O
N

VF
D

www.noritake-elec.com/53
Noritake Co., Inc. 2635 Clearbrook Dr., Arlington Heights, IL 60005 phone 1-800-779-5846 e-mail electronics@noritake.com

LCD

VFD

CS-Uversion-8.375x11.125_53.qxd 12/14/06 2:58 PM Page 13.qxp 1/31/2007 9:03 AM Page 1

http://www.noritake-elec.com/53
mailto:electronics@noritake.com

4 Issue 206 September 2007 www.circuitcellar.comCIRCUIT CELLAR®

FOUNDER/EDITORIAL DIRECTOR
Steve Ciarcia

MANAGING EDITOR
C.J. Abate

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Jeff Bachiochi
Ingo Cyliax
Robert Lacoste
George Martin
Ed Nisley

NEW PRODUCTS EDITOR
John Gorsky

PROJECT EDITORS
Steve Bedford
Ken Davidson
David Tweed

ASSOCIATE EDITOR
Jesse Smolin

ADVERTISING
860.875.2199 • Fax: 860.871.0411 • www.circuitcellar.com/advertise

PUBLISHER
Sean Donnelly
Direct: 860.872.3064, Cell: 860.930.4326, E-mail: sean@circuitcellar.com

ADVERTISING REPRESENTATIVE
Shannon Barraclough
Direct: 860.872.3064, E-mail: shannon@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster
E-mail: val.luster@circuitcellar.com

CONTACTS
SUBSCRIPTIONS

Information: www.circuitcellar.com/subscribe, E-mail: subscribe@circuitcellar.com
Subscribe: 800.269.6301, www.circuitcellar.com/subscribe, Circuit Cellar Subscriptions, P.O. Box 5650,
Hanover, NH 03755-5650
Address Changes/Problems: E-mail: subscribe@circuitcellar.com

GENERAL INFORMATION
860.875.2199, Fax: 860.871.0411, E-mail: info@circuitcellar.com
Editorial Office: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: editor@circuitcellar.com
New Products: New Products, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: newproducts@circuitcellar.com

AUTHORIZED REPRINTS INFORMATION
860.875.2199, E-mail: reprints@circuitcellar.com

AUTHORS
Authors’ e-mail addresses (when available) are included at the end of each article.

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 1528-0608) is published monthly by Circuit Cellar
Incorporated, 4 Park Street, Vernon, CT 06066. Periodical rates paid at Vernon, CT and additional offices. One-year (12 issues)
subscription rate USA and possessions $23.95, Canada/Mexico $34.95, all other countries $49.95.Two-year (24 issues) sub-
scription rate USA and possessions $43.95, Canada/Mexico $59.95, all other countries $85. All subscription orders payable in
U.S. funds only via Visa, MasterCard, international postal money order, or check drawn on U.S. bank. Direct subscription orders
and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 5650, Hanover, NH 03755-5650 or call
800.269.6301.

Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 5650, Hanover, NH 03755-5650.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of read-
er-assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or
from plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to
build things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to
construct or operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction.
The reader assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2007 by Circuit Cellar, Incorporated. All rights reserved. Circuit Cellar is a registered trademark of Circuit Cellar, Inc.
Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

MEDIA CONSULTANT
Dan Rodrigues

CUSTOMER SERVICE
Debbie Lavoie

CONTROLLER
Jeff Yanco

ART DIRECTOR
KC Prescott

GRAPHIC DESIGNER
Mary (Turek) Sobuta

STAFF ENGINEER
John Gorsky

Cover photography by Chris Rakoczy—Rakoczy Photography
www.rakoczyphoto.com

PRINTED IN THE UNITED STATES

TASK MANAGER

During the past year, I’ve received numerous e-mails from readers
who’ve begun using two inexpensive technologies to chronicle and
show off their projects: blogs and video. Every other week or so, I
receive an e-mail from a reader who points me to a web site or video
file that showcases an interesting new project. A great example is
Miguel Sanchez’s vertical plotter project, which you can view at
www.youtube.com/watch?v=VmB14M78CWU.

Blogging about your projects and presenting your peers with short
videos are effective ways of sharing your ideas and receiving useful
feedback about your designs. I encourage you to give it a try, and when
you do, be sure to send us an e-mail with a link to your work. We’d love
to have a look. If your project intrigues us, we might approach you about
the possibility of writing an article for the magazine.

This month, in addition to our usual batch of interesting columns,
we’re featuring seven great articles that will keep you in design mode
until the new year.

On page 10, Alexander and Jordan Popov describe an intelligent
power supply setup for an embedded system. Read this article before
you begin testing your next design.

Dale Wheat’s PIC-an-LCD design is a PIC-based serial LCD con-
troller (p. 18). As you’ll see, the chip is programmed in C and can work
with most alphanumeric LCD modules.

In “High-Performance Motor Controller,” Daniel Ramirez explains
how he uses a USB interface to issue high-level commands to his
motor controller from his laptop (p. 26). It’s your turn to give it a try.

Are you ready for some 1-Wire solutions? In the second part of his
“1-Wire in the Real World” series, Steve Hendrix finishes explaining
how he built a 1-Wire master (p. 42). Now you can put a 1-Wire solu-
tion in play even if it’s in a “hostile” environment.

On page 52, Aubrey Kagan begins a new series of articles about
the art of protecting an embedded design. This month, he focuses on
the topics of power supplies, inputs, and ground.

Once you’re confident that you can protect your designs, check out
Stuart Ball’s article entitled “Pulse Generation” (p. 58). He encourages
you to try a continuous rotary knob in your next design instead of a
keypad or buttons.

Wrapping up the feature article section of the magazine is
Thiadmer Riemersma’s article about embedded scripting (p. 62). He
explains how to harness the power of the Pawn scripting language. As
you’ll see, it’s possible to extend your firmware without changing it.

Happy reading.
Remember: if you try your hand at a design that’s similar to any of

those covered in this issue, be sure to write about the experience and
shoot a short video. We want to see what you’re up to!

One last note. Keep in mind that the submission deadline for the
Microchip 16-Bit Embedded Control Design Contest is October 16, 2007.
That means you have about a month and a half to finish up your
designs and submit your entries. With $15,000 in total cash prizes up
for grabs, this is sure to be a highly competitive contest. Good luck!

Blogs & Video

cj@circuitcellar.com

206_Task_Masthead.qxp 8/6/2007 12:58 PM Page 4

http://www.circuitcellar.com/advertise
mailto:sean@circuitcellar.com
mailto:shannon@circuitcellar.com
mailto:val.luster@circuitcellar.com
http://www.rakoczyphoto.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
mailto:info@circuitcellar.com
mailto:editor@circuitcellar.com
mailto:newproducts@circuitcellar.com
mailto:reprints@circuitcellar.com
http://www.youtube.com/watch?v=VmB14M78CWU
mailto:cj@circuitcellar.com
http://www.circuitcellar.com

TAKE YOUR DESIGN
PROJECTS INTO FULL BLOOM

Take the time to stop and smell the profitability.

NKK’s SmartSwitch™ series of LCD programmable

switches and displays are available in a virtual

bouquet of colors and dynamic graphics making

it both simple and cost-effective, for your inspired

designs to blossom. Better, more efficient designs

and processes will improve your bottom line and

help your projects flourish.

Power your designs with NKK.
Visit us online to:
• ORDER Dev Kits to drive your creativity

• DOWNLOAD software to expedite your design process

• PROTOTYPE and test new design ideas cost effectively

IS Dev Kit-2

1.877.2BUYNKK (228-9655)

Get Your FREE
3D CAD Model at:

http://cc.nkksmartswitch.com

5.qxp 8/6/2007 12:58 PM Page 1

http://cc.nkksmartswitch.com

6 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

September 2007: Data Acquisition

4 TASK MANAGER
Blogs & Video
C.J. Abate

8 NEW PRODUCT NEWS
edited by John Gorsky

93 CROSSWORD

FEATURES

DEPARTMENTS
94 INDEX OF ADVERTISERS

October Preview

96 PRIORITY INTERRUPT
Chronic Subscription Overdose
Steve Ciarcia

70 LESSONS FROM THE TRENCHES
String Theory
George Martin

74 FROM THE BENCH
I-Zip Dashboard
Jeff Bachiochi

80 SILICON UPDATE
Game On
Tom Cantrell

10 Smart Power
An Intelligent Power Supply for Embedded Systems
Alexander Popov & Jordan Popov

18 PIC-an-LCD
A Character-Based Serial LCD Controller
Dale Wheat

26 High-Performance Motor Controller
Daniel Ramirez

42 1-Wire in the Real World (Part 2)
The Solutions
Steve Hendrix

COLUMNS

Motion

Gaming with the Hydra (p. 80)

52 Resilience in Embedded Designs (Part 1)
Power Supply, Inputs, and Ground
Aubrey Kagan

58 Pulse Generation
Encoder Interfacing to Microcontrollers
Stuart Ball

62 Embedded Scripting
Thiadmer Riemersma

Dash Data
(p. 74)

Power Up (p. 10)

LCD Controller (p. 18)

Motor Control (p. 26)

206_toc.qxp 8/6/2007 1:01 PM Page 6

http://www.circuitcellar.com

7.qxp 7/27/2007 4:16 PM Page 1

http://www.atmel.com/AVRman

8 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

NEW PRODUCT NEWS Edited by John Gorsky

USB MIXED-SIGNAL SCOPE AND WAVEFORM GENERATOR
The BS100U is the newest member of BitScope’s popular family of

PC-based mixed-signal oscilloscopes. Like all BitScopes, it has an
analog input bandwidth of 100 MHz and supports real-time simulta-
neous analog and logic capture up to 40 Msps. Unique to the
BS100U is its optoisolation, decoupling it from the PC. You can
ground reference it independently. USB drop-outs due to ground
loops or glitches, when looking at high-power electrical or automo-
tive systems, are never a problem. Another feature to make its debut
in the BS100U is a powerful DSP-based, flash-memory-programma-
ble waveform generator. Operating independently of the scope’s cap-
ture engine, it enables complex waveforms to be synthesized con-

currently with waveform capture. The BS100U
has four inputs feeding two analog channels
plus eight concurrent logic channels, ±5 V of
adjustable external trigger input, a calibration
output, and low-power modes for extended use
on battery power in the field.

The premium BitScope DSO software pack-
age is included with the BS100U for a com-
plete set of integrated virtual instruments on
Windows or Linux PCs. Standard functions
include mixed-signal and digital storage scopes,
a logic analyzer, a baseband spectrum analyzer,
an X-Y phase plotter, and an integrated data
recorder. With the BS100U, the DSO intro-
duces 2-Gsps equivalent time sampling with
phase coherent full-speed dual-channel capture
for HF eye diagrams, ISI and modulation analy-
sis, a multiband spectrum analyzer for RF and
narrow-band signal analysis, and sophisticated
transfer function analysis applications using
the built-in waveform generator.

The BS100U costs $495.

BitScope Designs
www.bitscope.com

npn.qxp 8/6/2007 1:01 PM Page 8

http://www.bitscope.com
http://www.circuitcellar.com
http://docs.tibbo.com/index.html?em1000_ev.htm

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 9

NEW PRODUCT NEWS
14-BIT, 25-MSPS ADC FOR HIGH-TEMPERATURE APPLICATIONS

The LTC2246H is a 25-Msps, 14-bit ADC for high-temperature, high-reliability data acquisition systems. The
LTC2246H, guaranteed for operation across the –40° to 125°C temperature range, satisfies the high temperature
demands of automotive and military applications. Additionally, the LTC2246H comes in a leaded package, enabling
easy inspection of solder joints in manufacturing. This high-speed ADC is targeted for collision avoidance radar auto-
motive systems.

The LTC2246H, which consumes
only 75 mW, provides an excellent
74.5-dB signal-to-noise ratio and 90-dBc
spurious free dynamic range baseband
performance. The LTC2246H is pack-
aged in a small 5 mm × 5 mm TQFP
package with integrated bypass capaci-
tors requiring only a small number of
external components for more com-
pact, cost-effective designs.

For lower resolution requirements,
Linear Technology is also offering the
pin-compatible, 12-bit, 25-Msps
LTC2226H. The H-grade (–40° to
125°C) LTC2226H and LTC2246H are
$10.80 and $18, respectively, each in
1,000-piece quantities.

Linear Technology Corp.
www.linear.com

Visit www.circuitcellar.com/npn
for more New Product News.

npn.qxp 8/6/2007 1:01 PM Page 9

http://www.linear.com
http://www.circuitcellar.com/magazine/NPN/index.html
http://www.circuitcellar.com
http://www.adhoc101.com
http://www.e-pcb.com

10 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

controlled power supply that could
provide voltages down to 0 V to feed
most single-supply embedded micro-
controllers. But my thoughts changed
after playing with the Atmel AVR But-
terfly module that was shipped to the
contestants. It offers a nice user inter-
face and menu system, and it has
enough resources to build a more com-
plicated device. After thinking things
over, I came to a few conclusions.

First, like every good power supply, I
wanted mine to have short-circuit and
overcurrent protection. This is essential
for safety and reliability. I wanted the
protection to be self-resetting because
it can be annoying to replace fuses.
Second, I wanted the display to be used
to show the voltage and the current or
power consumed. By monitoring the cur-
rent drawn and power consumed, I knew
I could directly measure the power effi-
ciency of the system under test. Third, I
wanted the device to be able to test the
target system for sensitivity to major
power supply problems, such as a
brown-out, slow-rising power, periodi-
cal voltage drops, and noise on the
power lines.

With the help of my father Jordan

As digital integrated circuits evolve,
their power supply requirements also
change. When I started experimenting
with digital ICs, the 74 TTL family was
popular and easy to acquire. All the
boards were powered by a single 5-V
power supply. I made my first step into
the embedded world with an i8031
microcontroller with the inevitable ’373
latch for addresses, external EPROM,
SRAM, and a MAX232. The system was
powered by a common 5-V power supply.
The power supply was not a component
that required attention—the same design
was applicable for most digital designs.

As technologies evolve, transistors
inside ICs become smaller and require
lower voltages. The major focus for an
embedded system moves from speed
to lower power consumption and more
battery-powered devices are developed.
To efficiently use the capacity of a bat-
tery, a microcontroller must use the
same voltage or about the same voltage
provided by a battery. That is why
there are a variety of voltage require-
ments for embedded microcontrollers
(from below 1 V to more than 5 V). An
embedded system developer can no
longer rely only on the good old 5-V
power supply to feed the new chips.

As an embedded systems developer, I
always need a good power supply for my
embedded projects. The Atmel AVR
Design Contest 2006 was the perfect
opportunity to shoot two rabbits with
one bullet. I decided to participate in the
contest, which I always enjoy, and build
a useful power supply. This article
gives me the chance to present the
design to the embedded community.

My first idea was to build a digitally

(especially with respect to the analog
part of the circuit), I built an intelli-
gent power supply. The working pro-
totype is shown in Photo 1. You’ll find
it easy to build a similar system. The
system’s main components are depict-
ed in Figure 1.

HARDWARE
The system is powered by two volt-

ages. The main voltage is 12 V, and it
must provide enough current for the
target load, the Butterfly (through a
3.3-V linear regulator), and the other
components. The second voltage, –5 V,
is used as a negative supply voltage to
the op-amps.

The main block is the regulated
power supply, which was built with a
linear regulator. A 10-bit DAC con-
trols the voltage. The output of this
block flows through the current-detec-
tion block and then to the output con-
nectors of the power supply.

FEATURE ARTICLE by Alexander Popov & Jordan Popov

Smart Power

This “intelligent” power supply was designed specifically for testing embedded systems. In
addition to its numerous useful features, the ATmega169-based power supply can provide
any voltage from 0 to 5 V with 10-bit resolution.

Photo 1—The prototype of the intelligent power supply
did a great job proving the concept, testing the soft-
ware, and evaluating the results. The finished prod-
uct—which has a more compact PCB design, a
110/220-V PSU and cord, and a proper (grounded)
case—features the Butterfly on its front panel.

Regulated
power supply

Current
detection

10-bit DAC
AVR

Butterfly

Voltage
reference

3.3-V Power
supply

12 V
-5 V

VOUT´ VOUT

To
ADC

VREF

Figure 1—As you can see, the power supply is pretty
simple thanks to the Butterfly module.

An Intelligent Power Supply for Embedded Systems

2708017popvo.qxp 8/6/2007 1:03 PM Page 10

http://www.circuitcellar.com

As you can see in Figure 2,
the system features a
National Semiconductor
LM723 voltage regulator. It
has a temperature-stabi-
lized, low-noise voltage ref-
erence. In addition to short
circuit protection, it can
provide output voltages
down to 0 V.

The LM723 requires spe-
cial handling for low output
voltages. For output voltages
greater than 2–3 V, the V–
pin can be connected directly
to ground. But for voltages
down to 0 V (or even further), the V–
pin should be connected to a negative
voltage of at least –0.4 V. There are sev-
eral ways to produce this voltage. One
method is to convert positive to nega-
tive voltage with a switching capacitive
inverter. But note that this method can
introduce noise. The LM723’s voltage
reference is relative to the V- voltage.
That is why it is important that V- be
stable and noise free. Thus, another
method is used (see Figure 3). VREFF =
1.28 V is produced by U2A, R19, R5,
and R6 from the LM723’s reference volt-
age. This is inverted to VM256 = –2.56
V by the op-amp U2B, R1, and R2.
This also works as negative feedback
to VREF, partially compensating for its
temperature coefficient and stabilizing

the voltage reference even more.
Microchip Technology’s TC1321

DAC (U3) is connected to the LM723’s
IN+ pin to set the output voltage. The
TC1321 was chosen for its 10 bits of
resolution, 2.7–5.5 V single-supply
operation, good integral and differen-
tial linearity, and an output voltage
offset of less than 8 mV. The DAC is
controlled by the CPU inside the But-
terfly via an I2C interface.

The reference voltage for the DAC
is VREF = 1.28 V. It’s produced from the
reference voltage of U4 in the way
described above.

The DAC’s output is filtered through
a simple low-pass filter built with R7
and C5. Its purpose is to smooth the
output voltage and filter out the sam-

pling frequency on the
DAC’s output.

Many electronic devices
can’t withstand a small
reverse voltage in the power
supply. That’s why a volt-
age-offset correction is pro-
vided (R20, R9, R10, R18,
and U2D) in the voltage-
feedback circuit. This elimi-
nates the possibility of a
negative output voltage dur-
ing startup (when the DAC
is zeroed). There are two
reasons why this offset is
not eliminated in the soft-

ware with a constant added to the
number written in the DAC. First, the
offset can be positive, and there may be
a need for a negative constant. This
won’t work because the DAC works
only with unsigned values. As for the
second reason, note that in software,
the correction is discrete and there can
be an offset of up to one-half of it left.

The diode D1 provides additional safe-
ty to the powered electronic circuits by
not letting the output voltage become
lower than –0.7 V. On the power supply’s
output, there is the usual capacitor (C7)
with the unusual value of only 1 μF! You
would typically expect something like
1,000 μF here, but had this been used, the
output response would have been slowed
down and no high-speed control from the

CPU would have been possible. A
small capacitor is still needed to pre-
vent the circuit from self-oscillating.

The transistor Q1 is used to pro-
vide more output current than the
LM723 can source. The power sup-
ply is linear and it converts volt-
ages, but since the current is the
same for input and output, Q1 has
to dissipate the excessive power
(i.e., P = (VIN – VOUT) × IOUT). That is
why it should be mounted on a
large heatsink. Its area is calculated
for the worst-case scenario (i.e.,
VOUT = 0 V, IOUT = IMAX, θAMB = θMAX).
If the dissipated power is less than
5 W, a 65-to-90-W transistor in a
TO220 case can be used. When the
power is between 10 and 15 W, a
Darlington transistor in a TO247
case rated for more than 100 W
should be used. The area needed for
the heatsink can be seen in Table 1.

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 11

Figure 3—The schematic of the intelligent power supply shows that no exotic components are used. The device can be
easily reproduced by almost any embedded enthusiast. The Butterfly shouldn’t be a problem to obtain. The connections
to it are via headers P1 (USI), P2 (power), and P3 (VIN).

Temperature-
compensated

Zener Voltage
reference
amplifier

Inverting
input

24
VREF

3

Non-inverting
input

5
V–

V+
8

+

–

Error
amplifier

Frequency
compensation

10

Current
limit

Current
limiter

Current
sense

1

Series pass
transistor

7 VC

VOUT
6

VZ

9

Figure 2—The LM723 linear voltage regulator is a reliable component. It contains the
major analog blocks needed to build a stable, regulated power supply with current pro-
tection.

2708017popvo.qxp 8/6/2007 1:03 PM Page 11

http://www.circuitcellar.com

ware. ADC measurements are averaged
in packets of eight to eliminate spikes
and errors that could lead to false-over-
current detection. The constants for
matching the ADC code to the current
were calculated after measuring several
points of the characteristic and it proved
to be linear with just a small offset.

All the test cases are generated
through a programmable linear interpo-
lating engine with as many points as
needed. Every point consists of a time
interval and a voltage to be reached at
the end of the interval. This way, many
forms can be generated, the most use-
ful of which are already programmed:
brown-out, slow-rise, slow-fall, etc.
The points and parameters for each
program may be easily configured with
several arrays in the program memory.

CALIBRATION
The power supply needs to be cali-

important for the accuracy of this power
supply. All the power grounds should be
routed with different thick tracks to a sin-
gle point on the board. The signal grounds
should also be connected to this point.

SOFTWARE
Martin Thomas’s GCC port of the

demo code for the Butterfly is used as
a base for the software (see Figure 4).
Atmel’s driver for the USI has been
ported to GCC and software timeouts
have been introduced to eliminate
freezing if errors occur on the I2C bus.

The CPU frequency is changed to 8 MHz
because floating-point arithmetic is
used. In addition, all the power-saving
features are removed because they are
not needed in a power supply project.

The ATmega169V’s ADC is config-
ured to generate an interrupt on every
conversion. Current protection is a pri-
ority over any other process in the soft-

12 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

The resistor R14 has two functions. It
sets the LM723’s current threshold. The
protection is triggered when the voltage
across R14 reaches 0.65 V. It is also used
to measure the output current. The com-
mon-mode output voltage is suppressed
by the differential amplifier U2C and
only the voltage drop across the resistor
R14 is amplified. The voltage is propor-
tional to the output current in the ratio
1 V/1 A. The voltage is amplified to
about 5.6 V per amp to fit the range of
the Butterfly’s VIN measurement cir-
cuit, which has a 6:1 divider in the
input. Any offset is eliminated in the
software because it is not as critical as
the output voltage.

The intelligent part of the device is the
Butterfly. It has a good user interface
with a five-way joystick and a six-charac-
ter alphanumeric LCD. Many other
peripherals are connected to the micro-
controller, such as a piezo speaker,
DataFlash, an NTC thermistor, a light
sensor, and an RS-232 lever shifter. All of
the peripherals can be used to extend
the device’s functionality in the future.
Currently, the LCD, joystick, JTAG,
ADC, USI (for the I2C driving the DAC),
and one red LED are used. The LED was
not originally on the board, but it was
easy to add. Its cathode was soldered to
pin 3 on the USI header, which is
unused in the I2C communication, and
its anode was connected to the positive
power of the Butterfly board through a
220-Ω resistor. The LED illuminates
when the current protection is triggered.

The DAC (U3) and the Butterfly mod-
ule are powered by a linear power supply
that uses Holtek Semiconductor’s
HT7533-1 voltage regulator. This low-
dropout regulator is reliable and has no
risk of oscillation or high-voltage output
in low-current mode, which is some-
times seen in low-dropout regulators.

The absence of hum and noise is

Start

Greetings
string

Display volts,
amps, or

watts

“VSET”

“CUR PR”–
current

protection

“OUTTYP” –
Type of output

voltage

“TIME”

“OPTIONS”

Show
revision

Choose what to
display (V, A, or W)

Set nominal
system voltage

Choose current
prot threshold

Choose type of
output voltage

“CLOCK”

“DATE”

“DISPLAY”

Clock adjust

Clock format adj.

Date adjust

Date format
adj.

Display contrast

T_BO – Time for
brown-out

V_BO – Voltage
to fall to

T_RISE – Time for
raising to nom. V

V_FROM – Voltage
to rise from

T_FALL – Time
for falling

V_TO – Voltage
to fall to

T_ON – Time to
hold the nominal

voltage

T_RISE – Time
to rise

T_FALL – Time to
fall

V_FALL – Voltage
to fall to

T_DROP – Time
for voltage to drop

T_PER – Period
of repetition

“DC” – Constant
nominal voltage

“BR OUT” –
Brown-out

“SLOWR” – Slow
rising power

“TEST”– Power-
on just for short

time

“PERLIN” –
Periodical linear
rising and falling

voltage

“PERDRP” –
Periodical voltage

drops

“OFF” – No output
voltage

Press the joystick to start
the chosen program for

the output voltage

Parameters to the
programs on left

“SLOWF” – Slow
falling power

V_DROP –
Voltage to drop to

Figure 4—The power supply can be fully configured and used through the Butterfly’s comfortable user interface.

PC = VPLUS × IMAX, W 2 5 10 15

θθMAX = 45°°C
θθMAX = 113°°F

S, cm2 35 100 220 400

S, inch2 5.4 16 34 62

θθMAX = 60°°C
θθMAX = 140°°F

S, cm2 50 125 300 600

S, inch2 7.8 20 47 93

Table 1—The area of the heatsink required for transistor
Q1 depends on the maximum current drawn, maximum
ambient temperature expected, and VPLUS. The casing of the
device can also be used as a heatsink if it’s made of metal.

2708017popvo.qxp 8/6/2007 1:03 PM Page 12

http://www.circuitcellar.com

Put your creativity
to the test!

Join the Ethernet Revolution!

Circuit Cellar magazine is pleased to bring you
the WIZnet iEthernet Design Contest 2007. Now

you can easily add Ethernet capability to your
embedded project and win fame and fortune in

the process. WIZnet’s W5100 hardwired TCP/IP
Ethernet controller will be the key to your

contest success. This 3-in-1 chip solution brings
TCP/IP implementation without an OS. Both

MAC and PHY are embedded.

Show us how you use the impressive W5100
to usher your embedded project into the

Ethernet revolution. Your creativity and design
skills could win you a share of $15,000 in cash

prizes and recognition in Circuit Cellar magazine.

For details, visit
www.circuitcellar.com/wiznet.

13.qxp 8//6//2007 4:36 PM Page 1

http://www.circuitcellar.com/wiznet
http://www.wiznet.co.kr
http://www.ewiznet.com

14 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

brated to be as accurate and useful as a
test device. Calibration involves hard-
ware and software, and it requires a few
cycles of recompiling and reprogram-
ming the Butterfly. This is needed only
once after assembly. The voltage refer-
ence is stable enough in both tempera-
ture and time, and no drift is expected.

Don’t connect the Butterfly before
checking if everything is properly wired
and behaving normally in the rest of the
circuit. The first step after checking the
circuit is to power it on and measure the
voltages VPLUS (12 V), VMINUS (–5 V),
VCC (3.3 V), VREF (1.28 V), and VM256
(–2.56 V). The values may be somewhere
near these. There is no need to be exact.
Next, measure the reference voltage
VREF and adjust it to exactly 1.28 V
with the trimmer R19. After turning off
the power, connect the Butterfly with
the three connectors to the other part of
the schematic. Then turn on the power.

Next, you must set the default val-
ues in the corresponding files for a few
constants. In the file DAC.h :

#define V2CODECONST (200.0)

In the file ADC.h :

#define CODE2CURCONST (2.5e-3)
/* current in amperes */

#define CURCODEOFFSET 0

After compiling the code and flash-
ing the Butterfly, the output voltage
should be set to zero via the menu
system. With the trimmer R20, the
output voltage should be adjusted to
0 V.

To calculate V2CODECONST (the
code value for VOUT = 1 V), enter some
voltage VSET (e.g., 4 V). Measure VOUT

and calculate the real constant:

[1]

With an open circuit for the output
(zero current consumption), let the
device display the current and write it
down (I0DISP). Calculate the CURCODE
OFFSET as follows:

[2]

The next step is to program the But-
terfly with the new constants. To calcu-
late the CODE2CURCONST value, set a
predefined voltage VSET (e.g., 5 V) and
connect a known accurate resistor RLOAD

with enough power and with a value of
about 47 Ω (to sink about 100 mA of
current). Check the displayed value on
the LCD (IDISP). The constant can be
calculated as follows:

[3]

Change this constant in the ADC.h
file and recompile the program, then
flash the AVR. The calibration is done!

VOLTAGE PRESETS
Now that the power supply has been

brought to life, it’s time to see its real
strength, the capability of voltage pre-
sets to simulate different problems in
the power supply to test the behavior
of the system being powered.

The first preset is used to supply a
constant voltage to the connected

CODE2CURCONST I
code

V
R
I

CODE2CURCO

LOAD

SET

LOAD

DISP

= =

⎛
⎝⎜

⎞
⎠⎟

NNSTDEFAULT

⎛
⎝⎜

⎞
⎠⎟

CURCODEOFFSET
I

CODE2CURCONST
0DISP

DEFAULT

=

V2CODECONST

 V2CODECONST V
VDEFAULT

SET

OUT

device. Despite being the simplest of
all presets, it does have the features
common to all of them: regulated volt-
age down to 0 V, programmable current
protection, and self-restoring short-cir-
cuit protection. You can observe the
output current and power on the LCD.
These features distinguish the power
supply from the common solution of
the embedded systems enthusiast, a
simple linear voltage regulator powered
from a mains-connected adapter.

The real value that the power sup-
ply offers is its ability to simulate the
undesirable conditions of the embed-
ded system’s voltage supply.

BROWN-OUT
One of the most common problems

every embedded system has to deal
with is short-voltage drop (brown-outs),
which is usually caused by commutat-
ing large loads to the mains power
lines (see Photo 2). Almost every
microcontroller has a built-in brown-
out detection circuit that provides an
internal reset when the supply voltage
drops below a certain threshold. Often,
there is a need for a system-wide reset,
which is where stand-alone brown-out
detection ICs are used. The preset is
configured with two parameters: T_BO
(the duration) and V_BO (the voltage to
fall to during brown-out condition).

SLOWLY RISING VOLTAGE
The condition usually happens

while the power supply is powered up
(see Photo 3). It can be real trouble
because integrated circuits start to
operate on lower voltages than speci-
fied, but their behavior is unpre-
dictable and unstable. One of the sce-
narios is that a self-programming
microcontroller (every one having a

Photo 2—Brown-out test: How long and how deep of a volt-
age drop could the circuit sustain without resetting itself?

Photo 3—Slowly rising voltage can be real trouble for
circuits without low-voltage detection. This test should
always be performed.

Photo 4—This is a test for the behavior of the circuit
after the power supply is switched off.

2708017popvo.qxp 8/6/2007 1:03 PM Page 14

http://www.circuitcellar.com

15.qxp 8/6/2007 4:52 PM Page 1

http://www.america.renesas.com/ReachM16C/d

16 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

This is more common than the rising
voltage condition during power-on. The
effects to the circuit are similar and the
measures taken to eliminate the risks
during power-on should work here too.
Nevertheless, it’s always better to test,
not to assume, so this preset will be
helpful to see how the circuit behaves
after it is switched off.

The parameters are: T_FALL, the
time for falling from default voltage to
V_TO, voltage level.

SHORT TIME TEST
The preset can be used for testing a cir-

cuit for overrated current consumption
(see Photo 5). The power is supplied to the
device for only a short time. If there is a
problem due to a short circuit or mis-
wiring, the current protection will trigger.
The preset is also useful for discovering
problems leading to high current con-
sumption but are not short circuits. One
common problem is connecting the elec-
trolytic capacitor in a wrong polarity. This
does not always trigger the current protec-
tion, and after some seconds, the capaci-
tor explodes! That is why the circuit

bootloader) incorrectly executes
instructions and messes up its non-
volatile or flash memory.

The preset is configured with two
parameters: T_RISE, the time for ris-
ing to normal voltage, and V_FROM,
the voltage to rise from.

SLOWLY FALLING VOLTAGE
Regardless of the power supply circuit

used in an embedded system, when the
power turns off, the output filter capaci-
tor discharges through the circuit and
the voltage slowly falls (see Photo 4).

should be powered for a short time
and the current consumed should be
observed.

There is just one parameter for this
preset: the time the power is turned on.

PERIODICAL LINEAR VOLTAGE
The preset can be used for different

purposes. With a small period, such as
the one in Photo 6, the tested circuit
input capacitors can be evaluated. Do
they provide enough filtering to the
hum from the mains power net or to
the other periodical disturbances? Since
the waveform of the voltage is triangu-
lar, not sinusoidal, the introduced hum
has more harmonics, providing a better
test to the filtering part of the circuit
than a pure sinusoidal signal.

Another application of the preset is
testing the linear voltage regulator’s
behavior in the entire operating range of
input voltages. Some LDOs may become
unstable under some conditions (input
voltage and load) or stop stabilizing the
input voltage, feeding it to the output!
This can destroy all the integrated cir-
cuits powered by the LDO. That is why
a test for voltage stability should be per-
formed. The preset is useful for doing it.

Since it is a more complex waveform
than the previous presets, this one is con-
figured with more parameters: T_RISE,
the duration of the voltage rising,
T_FALL, the duration of the voltage
falling, and V_FALL, the voltage to fall to.

PERIODICAL VOLTAGE DROPS
The waveform generated by this pre-

set has even more harmonics than the
periodical linear one (see Photo 7). Thus,
it is a test for the power supply filter-
ing of the entire circuit, especially useful
for noise-sensitive audio amplifiers, such
as those for microphones or guitars.

Photo 5—This is a test for smell and smoke from the
circuit. With this power supply, it should not go that
badly due to the short time and the current protection,
but some components can get warm.

Photo 6—Periodical linear voltage can be used to test
the filtering efficiency of the input capacitors.

HMIDistributed
I/O

Industrial
Computing

Digital
I/O

Serial
I/O

We Listen. Think. And Create.We Listen. Think. And Create.

SeaLINK Ethernet Serial Servers Offer:
• 1, 2, 4, 8, and 16-Port Models
• RS-232, RS-422, RS-485, and Optically

Isolated Versions
• Included Software Enables Virtual COM

Port Operation
• Easy Installation and Confi guration
• DIN Rail or Table Mount Design
• Extended Temperature Option Available

SeaLINK Ethernet serial
servers are the fastest,

most reliable way to
connect serial devices

to your network.

F CUS
On Success

2708017popvo.qxp 8/6/2007 1:03 PM Page 16

http://www.circuitcellar.com
http://www.sealevel.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 17

A popular module in embedded
systems is a GSM/GPRS modem, some-
times used for voice communication.
Due to the time-division multiplexing in
the GSM network, the modem drains
current unequally, but periodically in
time. The frequency is about 216 Hz and
can be very annoying. It is heard when a
GSM phone is placed near an FM radio
tuner or active PC speakers. The peak
current consumed by the modem is
about 2 A, which causes voltage drops in
the traces, thus introducing noise across
power supply lines. Noise is easily trans-
ferred to the sensitive audio circuits if
they are not routed properly. To test how
the circuit reacts to this, the periodical
voltage drops preset can be used, config-
uring it with parameters to simulate an
active GSM modem. By altering the volt-
age drop, the power supply rejection ratio
of the audio amplifiers can be evaluated.

The preset is configured with three
parameters: T_DROP, the voltage drop
duration, T_PER, the period of repetition,
and V_DROP, the voltage to drop to.

FUTURE DEVELOPMENT
You’ll find this power supply useful,

especially if you put it in a case and
include a nice front panel. If you need
additional features, keep in mind that
the feature-rich Butterfly provides many
possibilities for expanding the device.
You can easily add the features you need.

One useful expansion is to use RS-232
communication to the PC for configuring
and displaying results of measurement.
You can send a snapshot of the current
drawn during startup via the RS-232 for
display and analysis. You can also use the
clock and data functions from the origi-
nal AVR Butterfly demonstration code.

The calibration process can be made

Photo 7—This is a test for the power supply filtering of the
entire circuit. It is especially useful for noise-sensitive audio
amplifiers, such as those used for microphones and guitars. SOURCES

ATmega169V and Butterfly
Atmel Corp.
www.atmel.com

HT7533-1 Voltage regulator
Holtek Semiconductor, Inc.
www.holtek.com

TC1321 DAC
Microchip Technology, Inc.
www.microchip.com

LM723 Voltage regulator
National Semiconductor Corp.
www.national.com

GCC Compiler
WinAVR
http://winavr.sourceforge.net

RESOURCES
Microchip Technology, “TC1321: 10-
Bit Digital-to-Analog Converter With
Two-Wire Interface,” DS21387B, 2002.

National Semiconductor, “LM723/723C
Voltage Regulator,” DS008563, 1999.

M. Thomas, “AVR-Projects,” 2007,
www.siwawi.arubi.uni-kl.de/avr_projects.

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2007/206.

Jordan Popov holds an M.E. in Computer
Systems from the Technical University
of Sofia. He has more than 20 inventions
to his name. Jordan runs a small busi-
ness that develops and manufactures
custom electronic products. You may
reach him at jordan@popovbrothers.com.

Alexander Popov (sasho@popovbrothers.
com) has an M.E. in Communication
Technologies from the Technical Uni-
versity of Sofia, Bulgaria, and a Spe-
cialist’s degree from ELSYS high school.
He is currently an embedded systems
developer at SmartCom, Bulgaria, work-
ing as a subcontractor for IBM.

easier, avoiding reprogramming the
device several times, by storing the con-
stants in E2PROM and providing a menu
system for their adjustment. The EEP-
ROM can also be used to store the last
used configurations of the presets. I

2708017popvo.qxp 8/6/2007 1:03 PM Page 17

http://www.siwawi.arubi.uni-kl.de/avr_projects
mailto:sasho@popovbrothers.com
mailto:sasho@popovbrothers.com
http://www.atmel.com
http://www.holtek.com
http://www.microchip.com
http://www.national.com
http://winavr.sourceforge.net
mailto:jordan@popovbrothers.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/206
http://www.circuitcellar.com
http://www.comfiletech.com

18 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

the humble PIC-an-LCD chip in the
middle of the page.

FEATURES
The PIC-an-LCD works with any

alphanumeric LCD module based on
the Hitachi HD44780, the Samsung
KS0066U LCD controller, or an equiv-
alent driver chipset. It has a TTL seri-
al input that operates at 2,400 or 9,600
bps. The specific communication
parameters are 8 data bits, 1 start bit,
1 stop bit, no parity bits, and no hard-
ware or software handshaking. The
serial input also has versatile “autopo-
larity” smarts that enable it to accept
normal or inverted serial data. This
enables it to connect to either TTL or
RS-232-level signals using a single
resistor. Four general-purpose outputs
and a bell output are also provided. A
level shifter and a signal inversion cir-
cuit are not required.

The PIC-an-LCD has a large num-
ber of software features. Refer to
Table 1 to learn more about the PIC-

The PIC-an-LCD is an LCD con-
troller chip with many useful features
(see Photo 1). It is based on the
Microchip Technology PIC16C621
microcontroller and programmed in C
language. Originally a closed and pro-
prietary design, I now place it, and all
of its supporting documentation, in
the public domain. In this article, I’ll
describe the inner workings of the
device and give some background on
its development.

HISTORY
The PIC-an-LCD serial LCD con-

troller chip was suggested to me by
my friend, Billy Gage, of BG Micro.
He sells an interesting assortment of
new and surplus electronics, including
many LCDs based on the Hitachi
HD44780 driver chipset. After discov-
ering the joy of controlling LCDs with
Microchip PIC microcontrollers, I set
about to make a device that was sim-
ple to use and low in cost yet had
many useful and interesting features.
Thus, the PIC-an-LCD was born. Billy
gets the credit for the name.

The PIC-an-LCD is now coming up
on its tenth anniversary. Thousands of
these chips have been sold all over the
world, and creative folk are still com-
ing up with fascinating uses for them.
The February 1999 issue of Popular
Electronics magazine ran an article by
Carl J. Berquist titled “Liquid Crystal
Displays—The Easy Way,” as the
cover story, with a life-size photo of

an-LCD’s device pins and their
respective functions.

OLD-SCHOOL DEVELOPMENT
Way back in the ye olde twentieth

century, embedded development was
not the walk in the park that it is
today. Before the advent of reprogram-
mable flash memory-based microcon-
trollers, the development cycle con-
sisted of writing code, cursing and
coaxing until the code compiled, and
then looking in the EPROM eraser for
a clean part to program. If no parts
were ready, you cranked up the timer,
started up the ultraviolet lamp, and
went for a walk for 10 or 20 minutes.
Once toasty parts were available from
the oven, you took one and put it in the
EPROM programmer and burned your
code into the part. Then, you took that
part, plugged it into your prototype,
tested your new code, and repeated as
needed. Once your code was as perfect
as humanly possible, you bought a tube
(or 20) of one-time programmable (OTP)
parts and very carefully blasted them
with your code. More cursing, coax-
ing, and crossed fingers were indicated.

Cursing and coaxing remain, but
these days, the part (singular) usually
stays in the prototype. But I digress.

SPENDING MONEY
There was also a lot of money

changing hands back in the good old
days. The windowed EPROM versions
of the OTP parts cost $10 or more

FEATURE ARTICLE by Dale Wheat

PIC-an-LCD

Dale describes his useful PIC-an-LCD device, which is a character-based serial LCD con-
troller. Based on a Microchip Technology PIC16C621, the LCD controller chip is programmed
in C language and works with most alphanumeric LCD modules. It accepts normal or invert-
ed serial data and connects to either TTL or RS-232-level signals with a single resistor.

Photo 1—The PIC-an-LCD is a serial LCD controller
based on the Microchip PIC16C621 and programmed in C.

A Character-Based Serial LCD Controller

2709016wheat-version2.qxp 8/6/2007 4:57 PM Page 18

http://www.circuitcellar.com

each, and you needed at least two or
three, so you could be erasing while
the other one was programmed or test-
ed. This overlap gave the thoughtful
programmer a moment to reflect on
the progress being made, which often
resulted in the allocation of more
funds for more windowed parts. I had
four before it was over.

The device programmer was also a
good way of ridding yourself of excess
fundage. There were prototyping pro-
grammers available for under $100, but a
real production programmer started in
the $500 range and just kept going. I
used a private-label version of Need-
ham’s EMP-20, which plugged into the
parallel port and had a DOS driver pro-
gram. It has since been discontinued
and replaced with the EMP-21, which
sports a USB connection and a Microsoft
Windows interface. I can shed a wee tear
about this, but I have to be comforted by
the fact that my EMP-20 is still running
and programming PIC-an-LCD chips to
this day. I also have to tip my hat to the
good people at Needham’s for their
excellent customer service. What com-
pany these days has a human being
answer the phone on the first ring and
has that same person answer your tech-
nical question completely and profes-
sionally? So, it’s a case of money well
spent, as I have been able to use the
device programmer for lots of other proj-
ects. Oh, and don’t forget that you need
to buy a good EPROM eraser. There are
cheap ones available, but they take a lot
longer to erase a chip completely, so
it’s worth it to get a decent one.

MORE MONEY
Let’s spend more money: I had taken

a quick look at the PIC assembly lan-
guage and decided against it. I was not
“afraid” of assembler because I had
learned to program that way eons ago
on an obscure National Semiconduc-
tor part, then the popular Z80 from
Zilog, followed by the IBM PC. The
PIC architecture just seemed odd to
me, with all the bank switching,
strangely named registers, and instruc-
tion mnemonics. Perhaps I didn’t give
it a fair chance. They seem to be doing
quite well, at last look. The PIC-an-
LCD was my first and my last commer-
cial PIC application, as I subsequently

was drawn to the Atmel AVR side of
town. The point is that I chose to go
with a higher-level language for this
project, specifically C. At that time
there was only one commercially avail-
able compiler that was in my price
range, and that was the PIC C compiler
from Custom Computer Services (CCS).
So, there went another $99 for the ver-
sion I wanted. But again, I have to
admit that it was money well spent
because the CCS compiler had many
features that made embedded program-
ming relatively painless, some of which
I have yet to see in any of the free or
open-source compilers available today.

WRITING THE CODE
The firmware developed slowly. The

first and most obvious task was to select
a chip with just enough, but not too
much, capability. Microchip makes a
dizzying array of products in the PIC
line. This just keeps growing because
they seem to be reluctant to ever discon-
tinue a part. I narrowed the field down to
the PIC16C62x family, which had the
best set of required features at a competi-
tive price. I ordered a few of each of the
windowed versions of the ’620, ’621, and
’622 variants of the part. The main differ-
ence was the amount of program memo-
ry available. I did not have a good feel for
how big the PIC-an-LCD firmware would
turn out to be, so I wanted to be pre-

pared. Like the story of Goldilocks and
the Three Bears, I eventually found one
that was just right. It turned out to be the
PIC16C621. Microchip has subsequently
performed a die-shrink on this part
and released it as the PIC16C621A,
which works interchangeably in this
application, and costs even less.

WHY YES, I SPEAK LCD
The first step in the application design

was to get the PIC to talk to the LCD.
This was where I found out, for sure,
that datasheets lie. Most datasheets from
LCD manufacturers simply copy, verba-
tim, the information provided by the
driver chipset manufacturers. Some-
where along the line, some errors
were introduced and have been happi-
ly and faithfully reproduced to this day.
Nevertheless, I was able to get the
firmware to talk reliably to the LCD.
Indulge me a bit and allow me to go into
a little bit of detail about what it takes to
interface a microcontroller to a garden-
variety LCD module. There are three
main areas that require your attention.

STEP 1 – POWER
The first area is to provide the prop-

er voltages to the LCD module. Most
alphanumeric LCD modules require a
regulated 5-V power supply, but draw
no more than 2 or 3 mA. It is odd that
when more black pixels are displayed,
less current is required. Some newer
LCD modules will operate at 3.3 V, but
the vast majority of units available in
the surplus channel are the 5-V species.
One nice thing about this type of LCD
is that almost every model has the
same pinout. There are a few excep-
tions, which I will detail shortly. Refer
to Figure 1 for a typical LCD layout.

Pin 1 is always ground. It is often
marked on the LCD module with a
miniscule “1” in the silkscreen layer,
usually accompanied by a correspon-
ding “14” at the other end of the con-
nector. If the pin is not actually num-
bered as such, it will often have a
square pad or some other indication
that makes it unique among the other
pins. On the dual-row connectors,
pins 1 and 2 are usually marked. Note
that this numbering scheme may seem
“backwards” because it supposes a head-
er or connector is installed on the top of

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 19

PIC-an-LCD device pin descriptions

Pin Name Description
1 GP2 General-purpose output 2

2 GP3 General-purpose output 3

3 GP4 General-purpose output 4 / Bell

4 -MCLR -MCLR (reset)

5 GND Ground

6 SDI Serial data in

7 RS LCD register select (LCD_RS)

8 RW LCD read/write control (LCD_RW)

9 E LCD Enable (LCD_E)

10 DB4 LCD Data bit 4 (LSB)

11 DB5 LCD Data bit 5

12 DB6 LCD Data bit 6

13 DB7 LCD Data bit 7 (MSB)

14 VCC VCC (5 VDC at 10 mA max)

15 OSC2 OSC2 crystal

16 OSC1 OSC1 crystal

17 GP0 General-purpose output 0

18 GP1 General-purpose output 1

Table 1—The PIC-an-LCD chip is housed in an 18-pin
plastic DIP package.

2709016wheat-version2.qxp 8/6/2007 4:57 PM Page 19

http://www.circuitcellar.com

power and ground pins straddle the mid-
dle of the part. You have been warned.

The best way to test proper power
supply connections is to measure the
amount of current flowing in the cir-
cuit. Anything more than 5 or 10 mA,
except on very large displays, is cause
for concern. If less than 1 mA of cur-
rent is measured, then it is highly
likely that a proper connection has not
been made to the correct terminals.

Pin 3 is VEE, or the voltage used to
drive the LCD segments themselves.
VEE is adjusted to control the contrast
or viewing angle of the display. This is
where things get weird. Most LCD
modules have a limited temperature
range, which is normally 0° to 50°C.
That’s fine for indoor applications, but
in the real world, temperatures some-
times fall below freezing, even here in
Texas. To compensate for such tem-
perature extremes, extended tempera-
ture fluid is used between the sheets
of glass that comprise the LCD mod-
ule. Extended temperature LCDs can
require a much wider range of VEE. I
have found that many normal temper-
ature range LCDs work well with VEE

at or very near ground, with 0.3 V
being the most common. This can be
provided by simply connecting pin 3
to ground via a 330-Ω resistor. If this
doesn’t work, try connecting pin 3
directly to ground. If that doesn’t work,
you’ll need to set up a voltage divider
between VCC and ground. This can be
either two resistors of a known ratio or a
potentiometer in the 20-kΩ range. If this
still doesn’t work, you’ll need a negative
voltage supply of up to –8 V. You’ll also
know that you most likely have an
extended temperature range LCD.

Test the voltage to pin 3 by connect-
ing power and ground to pins 2 and 1,
respectively. With no other pins con-
nected, the LCD will begin operating but
will not be properly initialized, no mat-
ter what the datasheet says about it
being able to initialize itself. I have yet
to see that happen in the wild. What you
should see is a line of solid black blocks.
If this is a two-line LCD, then only the
top line is normally black. If it’s a four-
line LCD, then the first and third lines
will be black. If you see no black blocks,
it’s almost certain that the contrast is
not properly set. Try the various voltages

true pin numberings on the dual-row
connectors, the LCD driver chips will
grow quite warm and draw an unreason-
able amount of current. Thankfully,
most LCDs are not immediately
destroyed in this manner, but extended
exposure to this reverse condition will
eventually cause permanent damage to
the unit. Please note that even the
most momentary of reversed power to
the PIC16C621 will result in instant
yet invisible destruction of the device.
This trick can be performed by placing
the chip in its socket backwards as the

20 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

the module, which would very often
stand taller than the bezel of the LCD
unit itself, and interfere with flush
mounting of the LCD in an enclosure.

Pin 2 is always VCC. This is normally
5 V. As mentioned before, the supply
current requirement is nominally low
and this is one of the most attractive fea-
tures of the LCD. Stable operation
requires a regulated power supply and
one that can hold the supply voltage
within 5%. If power and ground lines are
accidentally swapped, as will be the case
if you don’t pay close attention to the

2709016wheat-version2.qxp 8/6/2007 4:57 PM Page 20

http://www.circuitcellar.com
http://www.expresspcb.com

Put your creativity to the test!

21.qxp 8/6/2007 5:01 PM Page 1

http://www.wiznet.co.kr
http://www.ewiznet.com

22 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

at pin 3 to get the display looking
good and at a comfortable angle
from where you are observing it.

STEP 2 – INITIALIZATION
Once you’ve observed the row of

black blocks, and only then, are you
ready to move on to item number
two, which is device initialization.
This is performed by the PIC-an-
LCD automatically. It knows the
magic numbers and the proper
sequence and pacing to send them,
which differ slightly from any of the

datasheets I’ve encountered. Timing
is the most critical element in this
process. When you start writing
your own LCD initialization rou-
tines, do yourself a favor and start
out really slow. This is the number
one cause of improperly initialized
devices. Another tricky aspect of
debugging initialization code is that
the LCD tends to stay initialized
even during short power cycles. So,
while you think you’re completely
resetting the system by turning it off
briefly and turning it back on, the

LCD is still merrily ticking along like
nothing happened. This masks subtle
bugs that sneak into your code, such as
reducing some of the timing parameters.

Now that the LCD is properly ini-
tialized, you may see a single block
cursor, a blinking underline cursor, or
nothing at all. This behavior is defined
as part of the initialization phase. I
always like to see positive proof of cor-
rect behavior, so the first few times
after I cobble together some LCD code
I like to leave a big, rude, blinking
block cursor flashing at me. I also decid-
ed that would be the best option for all
the PIC-an-LCD chips out there, so their
new owners could see that something
was happening. Once I’ve decided on a
particular application for the LCD proj-
ect, I normally turn off the cursor,
except for user-input functions.

STEP 3 – DATA & COMMANDS
The third item concerns the sending

of data and commands to the LCD
module. Timing, as always, is critical.
Data sent to the data register generally
gets written to the display memory
buffer. For example, if you write the
ASCII code for an exclamation point
(0x21) to the data register, an exclama-
tion point appears where the cursor was,
and the cursor is advanced one space to
the right. You can send an instruction to
the instruction register and expect it to
be carried out, but be aware that the
controller chips are relatively slow
when compared to most microcon-
trollers. It can take many milliseconds
to execute some instructions, especially
if it involves clearing the screen,
which involves a multitude of writes.

There are a lot of assumptions in
the last paragraph. Instead of the dis-

Figure 1—The PIC-an-LCD
requires very few external com-
ponents for normal operation.

2709016wheat-version2.qxp 8/6/2007 4:57 PM Page 22

http://www.circuitcellar.com
http://www.cadsoftusa.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 23

first one to consider is the reg-
ister select, or RS line, which is
on pin 4 on most LCD mod-
ules. When this line is a logic
one, the data bus is connected
to the data register. Think of
this register as the gateway to
the display data and custom
character generator memory
arrays. When the register select
line is a logic zero, the data bus
is connected to the instruction
register or the status register,
depending on the state of the

read/write, or R/W line.
The read/write line, which is on pin 5,

controls the direction of the data flow on
the data bus. When low, data is written
from the data bus to the destination with-
in the controller chip indicated by the
register select line. When the line is high,
data is read out of the controller chip and
output on the data bus. Many simpler
LCD interfaces omit the control line and
use only writes to control the LCD. This
method is perfectly valid, but it tends to
run a little slower because open-loop wait
states must be inserted after every write.

The data bus is normally 8 bits wide.
The internal registers and memory
locations of the HD44780 are also
8 bits wide. A very nice feature that
was added to the HD44780 interface
was the ability to send 8-bit data and
instructions in two steps, using only
4 data bits. This reduces the number
of dedicated interface lines. This is the
method used by the PIC-an-LCD.
Only the upper 4 bits (D4, D5, D6, and
D7) of the LCD module’s data bus are
connected to the PIC-an-LCD chip.

The control lines are very simple. The

play memory buffer, you can
tell the LCD controller to
point to the custom character
generator RAM (CGRAM)
section. Writing data to the
data register sends dot pat-
terns to the CGRAM, eight
per character, with a total of
eight custom characters avail-
able. These are mapped to
locations 0 to 7, and duplicat-
ed in locations 8 to 15, which
normally correspond to the
otherwise unprintable ASCII
control codes. The PIC-an-LCD uses a
couple of the custom character slots to
create characters common to most PCs
but missing from the standard LCD
character generator ROM, specifically
the backslash “\” and the tilde “~.” Also,
the expected automatic advancement of
the cursor is a programmable option. It
can go backwards or nowhere, depending
on how the unit is initialized. Even the
number of visible lines on the LCD
must be programmed because the same
controller chipset is used for many dif-
ferent configurations of LCDs.

The mapping of the characters on
the LCD is not contiguous. All LCD
modules of this flavor have 80 bytes of
display RAM, which is configured as
two lines of 40 characters each. The
addresses of the first bytes of each
row, however, are 64 bytes apart. That
leaves a 24-byte gap from the end of
line one to the beginning of line two.

The PIC-an-LCD handles noncontigu-
ous mapping fairly well, but not perfect-
ly. It introduces the concepts of “car-
riage return” and “line feed,” for exam-
ple, which exist in the typewriter/tele-
type output device model, but not in
the native LCD functionality.

So, by now we have the LCD mod-
ule properly connected to the appro-
priate power supply and we have
adjusted the contrast for good viewing.
I can’t emphasize enough how impor-
tant it is to do this before trying to
send commands and data to the LCD.
Now it is time to connect some more
wires to the LCD, but this time they
come from the microcontroller.

SHORT(ER) BUS
The HD44780 interface uses a paral-

lel data bus and three control lines.

Photo 2a—The PIC-an-LCD demo board is shown with the LCD module removed
so you can see its components. I crammed everything but the kitchen sink onto the
board and still made it fit within the form factor of a standard four-line LCD module.
The PIC-an-LCD chip is the one on the left. b—The PIC-an-LCD demo board is
shown completely assembled. Once upon a time, these 4 × 20 LCD modules were
everywhere to be found in the surplus channel and quite attractively priced.

a) b)

2709016wheat-version2.qxp 8/6/2007 4:57 PM Page 23

http://www.circuitcellar.com
http://www.lemosint.com

the port pins using LCD_READ as an argu-
ment to set_tris_b(). A 15-ms delay
is generated to give the LCD module
time to “wake up.” Now, the tricky part:
convince the HD44780 to operate in 4-bit
mode, even though it wakes up in 8-bit
mode. This is done by repeatedly sending
a partial command to set the interface
length with odd timing spaces. Once
that’s done, send the command to set
(again) the 4-bit data mode, as well as the
two-line mode and the 5 × 7 font mode.
These are the most common settings.
They are summed up in the instruction
code 0x2c. Next, clear the screen with
the 0x01 instruction and then wrap up
the initialization with the instruction
that sets up a block cursor, 0x0d.

SERIAL INPUT
The CCS C compiler also provides a

library for performing serial input and
output, even in the absence of a UART.
Notice that the serial input line also
happens to be the interrupt pin. Depend-
ing on the state of the serial input line at
power-up, the program sets up either
inverted or noninverted routines to
accept incoming serial data. This enables
the PIC-an-LCD to be connected directly
to any RS-232 device with only a resistor.
No signal inversion circuitry is required.
It will also work if it is connected direct-
ly to another microcontroller, like a
BASIC Stamp, another PIC, or whatever
you can cobble up. The interrupt is con-
figured to be either rising- or falling-
edge triggered, and that sets the serial
input routine in motion. A character is
received and stored in a circular buffer.

The PIC16C621 requires an external
crystal for normal operation. The PIC-an-
LCD code assumes either a color-burst
crystal with a frequency of 3.579545 MHz,
which results in an incoming data rate of
2,400 bps, or four times that frequency
(14.31818 MHz) to obtain 9,600 bps.
When I originally designed the PIC-an-
LCD, using the PIC16C621, the available
maximum clock rates were 4 MHz
and 20 MHz. The new PIC16C621A
offers those clock speeds and even a
40-MHz version. Theoretically you could
bump the data rate up to 19,200 bps, but
I haven’t tested this.

HANDLING DATA & COMMANDS
The main loop waits for a character

Being able to read back from the status
register will enable the microcontroller to
know exactly when the HD44780 is
ready for more data and instructions.

The next and last control line is the
enable line, or just E. It is a positive-
going pulse that clocks the data in or
out, depending on the state of the
other two lines. Note that the pulse
generally has a minimum active state
time of 450 ns, but it can vary from
device to device. This is by far the most
common timing pitfall of working with
LCDs. Modern microcontrollers can
raise and lower individual output lines
in much less time, and a pulse that’s
too skinny just doesn’t get the job done.
The enable line is always on pin 6.

LCD INITIALIZATION IN C
The first thing that needs to be done

each and every time the PIC-an-LCD
is powered up is initialize the LCD
module. The complete listing is post-
ed on the Circuit Cellar FTP site.

One of the handy features of the CCS
C compiler is the way it handles bit
fields. Many limited implementations of
the C language, especially for embedded
applications, omit bit-field capabilities.
Since most input and output with micro-
controllers consists of bit twiddling on
some level, the ability to use structures
of bit fields cleans up the source code.
The CCS C compiler also allows input
and output registers to be mapped using
structure definitions. That spares the pro-
grammer from a lot of shifting, masking,
and tedious bit counting. The LCD inter-
face uses four data lines and three control
lines, for a total of seven lines. The lines
are all mapped to a single I/O port, but
can be referred to individually as lcd.rs,
lcd.rw, lcd.e, and lcd.data, which
represent four data lines, respectively.

Although the PIC16C621 lacks a true
external data bus, each of the general-pur-
pose input and output lines can be recon-
figured on the fly. This enables a single
pin to be an output one moment and an
input the next. For the initialization of
the LCD module, we can get by with
outputs only. This is accomplished
with the set_tris_b(LCD_WRITE)
statement, LCD_WRITE being a constant
defined using the lcd_pin_map struc-
ture. Functions that need to read from the
LCD module can reverse the direction of

www.circuitcellar.comCIRCUIT CELLAR®24 Issue 206 September 2007

to show up in the buffer and then
sends it to the lcd_putc() routine,
which decides what to do with it. The
lcd_putc() routine is where all the
features are mapped. It is a single, large
switch() statement. First, all the com-
mand cases are checked. If the received
character is not a command, it is
assumed to be printable data. I
remapped the custom characters from
their native positions of 0 to 7 (repeated
at 8 to 15) to 128 to 136 to avoid con-
flicts with the ASCII control characters.

The simplest command cases are those
that can be handled by sending a single
instruction to the LCD module. These
include the home cursor, cursor left, cur-
sor right, clear screen, shift left, shift
right, and special cases to properly dis-
play the backslash “\” and tilde “~” char-
acters, which are not normally present.

The next simplest command cases are
the ones that simply wait for another
character to arrive and then do some-
thing with that data. These include the
cursor address, send LCD command,
send LCD data, set number of lines, set
general-purpose output lines, print signed
decimal number, print unsigned decimal
number, and set cursor display options.

This leaves the most complex com-
mands, which generally require a func-
tion call to process. The simplest of these
are the commands to save and restore
the cursor position. The bell() function
toggles the bell output at 1 kHz for 0.1 s,
assuming a 14.31818-MHz crystal.

While the LCD module supports the
equivalent of a nondestructive back-
space command with the cursor left
command, I wanted to include a
destructive backspace as well, because
this is what most people expect to hap-
pen when they press the backspace key.
It’s trivial to do. First, a nondestructive
backspace command is issued. This
backs up the cursor one space. Then, a
space character is printed, but since
this moves the cursor back to where it
was originally, another nondestructive
backspace command is issued. The hor-
izontal tab command moves the cursor
to the next tab position, which is
presently fixed at multiples of four.

The remaining functions, which
include vertical tab, carriage return, and
line feed are more sophisticated in that
they have to take varying LCD geome-

2709016wheat-version2.qxp 8/6/2007 4:57 PM Page 24

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 25

SOURCES
PIC-an-LCD
BG Micro
www.bgmicro.com

C Compiler
Custom Computer Services, Inc.
www.ccsinfo.com

HD44780 Driver chipset
Hitachi
www.hitachi.com

PIC16C621 Microcontroller
Microchip Technology, Inc.
www.microchip.com

EMP-20 and EMP-21 Programmers
Needham’s Electronics, Inc.
www.needhams.com

KS0066U LCD Controller
Samsung
www.samsung.com

Dale Wheat (dalewheat.com) is a full-
time freelance writer in the Dallas
area. He works primarily with
embedded systems and shiny things
that blink or beep. Dale is married and
the father of two adult children.

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2007/206.

tries into account. Even though all LCD
modules think they have two lines of 40
characters each, they are often packaged
in many other configurations and mapped
accordingly. This can provide some
confusing behaviors to the uninitiated.

CONCLUSION
This concludes the whirlwind tour of

the source code. If you’re actually look-
ing at the original code, you can see
some things have been commented
out. One trick I learned about the CCS
C compiler, or at least the version I was
using 10 years ago, was that if you left
out the very last break statement in a
switch() statement, you would save a
word of program code. I also had to leave
out the print hexadecimal number func-
tion, in order to be able to leave in the
signed and unsigned decimal number
functions. I ran out of room. All told, the
final version uses 2,044 of the 2,048 bytes
available in the program memory.

There’s a noncritical but slightly
annoying bug in the code. Can you find
it? If you’re a real code tweaker, you
might want to up the size of the serial
input buffer. The original PIC16C621
chip had 80 bytes of RAM, 16 of which
could be used for the serial input buffer.
The new PIC16C621A has 96 bytes, so
why not use them to increase the size of
the serial input buffer from 16 to 32 bytes?
Because the serial input routine is soft-
ware based, it eats up a lot of fore-
ground time receiving characters. That
leaves very little time to actually
process them. A bigger buffer will help
postpone the inevitable buffer overruns.

BUILDING A PIC-AN-LCD CIRCUIT
Figure 1 shows a minimal PIC-an-

LCD example circuit. A step-by-step
guide to building a PIC-an-LCD circuit
is also detailed in the user’s manual.
This circuit can easily be built on a
solderless breadboard.

Another example circuit is the official
PIC-an-LCD demo board (see Photos 2a
and 2b). This was produced and sold as a
kit and as an assembled unit. It was my
attempt at using all of the features of the
PIC-an-LCD chip. This was also my first
commercially produced PCB design. Not
knowing any better, I just laid out the
components and traces using a Gerber
file editor, without the benefit of a

schematic. I was rather pleased that it
required no feed-throughs, also known
as vias. It seems that I learned the
basics of PCB layout and design about
two decades too early, when every sin-
gle drill hit cost money, and single-
sided was the way to go, if possible.

SUCCESS!
The PIC-an-LCD user’s manual is

available for download on my web site
http://dalewheat.com. It has all the
information needed to hook up the PIC-
an-LCD in a typical application circuit.
The PIC-an-LCD condensed datasheet is
also available on my web site. It has all
the main points, such as pin descrip-
tions, a command summary, and typical
LCD connection, all on a single page.

The PIC-an-LCD was my first com-
mercially successful design, and I’d like
to thank Billy Gage of BG Micro for
making it possible. I now give it away
to the world to use as it sees fit. I

2709016wheat-version2.qxp 8/6/2007 4:57 PM Page 25

http://dalewheat.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/206
http://www.bgmicro.com
http://www.ccsinfo.com
http://www.hitachi.com
http://www.microchip.com
http://www.needhams.com
http://www.samsung.com
http://www.circuitcellar.com
http://www.segger.com

Unlike PCs, which have a high-per-
formance peripheral controller interface
(PCI) bus, laptops have not been widely
used to control embedded hardware
because of their inherent I/O limitations.
However, recent developments in
embedded Ethernet appliances and the
wide acceptance of USB-based devices for
both laptops and PCs now make it possi-
ble for design systems to harness the
incredible processing speeds (gigahertz) of
today’s laptops. For high-end industri-
al applications, embedded Ethernet is
available with connections to embed-
ded devices via NetBurner, Rabbit
Semiconductor, and similar boards. But
these solutions are usually more costly
than those based on USB boards. Embed-
ded Ethernet requires an embedded
TCP/IP stack and more involved Ether-
net software development compared to
the USB solution proposed in this article.

The USB motor control system is
shown in the block dia-
gram in Figure 1. The lap-
top acts as the host and a
Microchip Technology
PIC18F4450 USB microcon-
troller is the USB peripher-
al. The 16-bit Microchip
dsPIC30F4011 motor con-
troller board and the dual
H-bridge board handle
motor control. The two-
microcontroller approach
provides the flexibility of a
USB interface combined
with the processing power
of a laptop. This includes
using the various laptop
development and analysis
tools, such as Excel and
MATLAB and software

26 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

development tools, such as Visual C++.
The block diagram shows how the
PIC18F4550 acts as a gateway to com-
municate with the dsPIC30F4011,
using the SPI and USB interfaces.

Don’t let the “USB” keyword give
you the impression that this interface is
difficult to use in applications with a lot
of human interface description (HID)
programming and USB endpoints
(buffers), which require a lot of technical
reading. Microchip provides all the nec-
essary drivers to enable you to access
the USB port and treat it as a serial port
(COM3) on the laptop using a Windows
virtual communication port (VCP).
When all you really want to do is con-
trol a DC motor with a laptop using
your favorite application development
language (e.g., Ada, Basic, C, C++, or
JAVA), the well-written Microchip appli-
cation note AN956 gives you all the
necessary information to use the USB

port in this manner. For more detailed
information on USB specifications and
the HID interface, refer to Jan Axelson’s
USB Complete: Everything You Need to
Develop Custom USB Peripherals. It
provides what you need to develop
advanced HID-based USB applications.

Although I could have used Visual
C++ or Visual Basic for the host motor
controller application running on the
laptop, I chose the Ada95 language
because of its excellent reputation as a
reliable embedded software development
language for safety-critical applica-
tions. These include such diverse appli-
cations as aircraft systems, medical
applications, the NASA International
Space Station (Canadarm), and the Euro-
pean Space Agency’s Ariane rocket.

SENSOR PLATFORM
The USB motor controller was

designed to drive some of my home secu-
rity and robotics projects,
including the tilt/pan sen-
sor platform that I made
from Vex parts. A Radio
Shack SW-P-WOC Swann
Communications
NightHawk wireless secu-
rity camera is mounted on
it (see Photo 1). The Vex
robotics design system is
manufactured by Innova-
tion First. It is similar to
other construction sets,
such as the original A.C.
Gilbert and Meccano erec-
tor sets that enabled you to
build all kinds of robots,
props, and other devices.
The design system origi-
nally sold at Radio Shack

FEATURE ARTICLE by Daniel Ramirez

High-Performance Motor Controller
With a USB interface, Daniel can issue high-level commands to his motor controller from his
laptop. This enables his laptop to process algorithms while an embedded controller handles
the rest of the work. Motor control has never been easier.

USB

USART

SPI

Microchip
20-MHz PIC18F4550
USB controller board

Host

USB
2.0

RS-232
115,200

bpsHost

SPI

Dual H-bridge
board

Motor
2

Motor
1

Microchip
30-MIPS dsPIC30F4011
motor controller board

SPI

PWM

10-bit
ADC

QEI

1

2

3

Potentiometers

Figure 1—The block diagram of the USB motor controller system shows all the major com-
ponents, including the laptop, the USB controller board, the DC motor controller board, and
the H-bridge motor driver board.

2708020ramirez.qxp 8/6/2007 5:05 PM Page 26

http://www.circuitcellar.com

stores, but it is now available only on the
Internet directly from Innovation First.

Dean Kaman (inventor of the Segway)
initially inspired and supported For
Inspiration and Recognition of Science
and Technology (FIRST) competitions
using the Vex system. The system is
currently used in FIRST competitions
at high schools all over the U.S., and
with Dean’s continued support, it is
now an integral part of Rhode Island’s
high school robotics curriculum.

To test the USB motor controller, I
connected the USB motor controller’s
PWM outputs to the two PWM inputs
from the dual H-bridge board, which
directly drives the two 5-V geared HD
DC motors. The platform frame was
made from Vex system components,
which I purchased at Radio Shack,
along with gears and belts salvaged
from old surplus equipment.

The sensor platform has two very
powerful HD geared DC motors, each
with 100 counts-per-revolution (CPR)
optical encoders attached to their
respective input shafts. One of the

motors is used to pan the sensor plat-
form 0° to 360°, while the other motor
is used to tilt the sensor platform ±90°.
My goal was to be able to position the
platform to within ±1° resolution. The
encoders attached to the motors should
help attain these specifications under
laptop control using the USB bus.

The first motor pans the sensor plat-
form using the timing belt. The sec-
ond motor, which is attached to the
platform itself, tilts the sensor. While
this may seem like a very simple
example, the USB motor controller
also allows you to control many types
of motors, such as coreless, BLDC, and
three-phase motors using sophisticat-
ed PID control. Microchip provides all
the necessary application notes and
firmware for that.

AN ELEGANT SOLUTION
One of the neat features of

Microchip’s USB-based serial port, appli-
cation note AN956, is the fact that prac-
tically any PC- or laptop-based serial
application will work using a VCP

with no HID programming required.
This feature is what makes the board
act as a gateway to embedded controller
applications, such as the USB motor
controller. It is an excellent feature

since the current trend in laptop
designs is to leave out serial ports,
including the parallel port, in
favor of a USB port. The USB port
can also supply the 5-V power
supply to an embedded project, as
long as the power requirements
are modest (around 100 mA).

It is important to note that the
Microchip USB driver was devel-
oped on the PIC18F4550 USB
controller as a state machine, so
only polling or interrupt process-
ing may take place in the user’s
application, but no blocking
statements can be used or the
driver will hang the controller.

The PIC18F4550 board is a very
well-designed, low-cost board that
uses a 20-MHz oscillator to gener-
ate the 48-MHz clock required for
USB communications using its on-
chip PLL. The board derives its
power from the USB bus, so no
external power supply is required.

You would think that I worked
for Microchip, with the praise I
have for their products and accom-
panying software tools, which my
motor controller design relies on.
The truth is I don’t live anywhere

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 27

Figure 2—The DIY PIC18F4550 USB controller board schematic shows how to make the USB interface between the lap-
top and the main motor controller board.

Photo 1—This is the tilt/pan sensor platform with the
NightHawk wireless security camera mounted on it.

2708020ramirez.qxp 8/6/2007 5:05 PM Page 27

http://www.circuitcellar.com

USB 2.0 interface to the laptop. In
future designs, I will include it as part
of the design since it is very easy to do
and will lower the cost. The board was
very easy to set up and use. Microchip
provides a complete schematic of the
board for readers who would prefer to
build it from scratch. In fact, to make
the construction easier, you can pur-
chase the board (see Figure 2).

A TALE OF TWO PICS
Now you know how the laptop talks

to the USB controller and acts as a
communications gateway between the
laptop and the embedded
dsPIC30F4011 motor controller. Inter-
processor communication between the
two controllers is handled via the SPI

near enough to the beautiful state of
Arizona to be able to work there (as
much as I like visiting the Grand
Canyon, Sedona, and the large crater).

DIY USB 2.0 BOARD
As you can see, Microchip has taken

a lot of the USB drudgery away from
the DM163025 full-speed USB demo
board, which includes all the neces-
sary USB hardware and the software
drivers for Windows XP. Although I pur-
chased a couple of these boards for con-
venience, I was able to reuse some of
my older PIC18F452 prototype boards. I
just substituted the PIC18F4550 with
minimal changes for my own DIY
USB controller (see Figure 2).

In addition to the USB interface,
this board also supports a
USART, an SPI, and an I2C
interface. I opted to use the
SPI to communicate with the
dsPIC30F4011 motor con-
troller because of the higher
data rates possible using an 8-
bit SPI, although the USART
and I2C interfaces can also be
used for this purpose.

I purchased a PIC18F4550
USB controller board directly
from Microchip (see Photo 2).
It came with the USB cable,
USB connector, and provided
all the necessary firmware
and USB drivers to handle the

28 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

Photo 3—The RH-5A-5502 geared DC motor is a very powerful
low-voltage (5 V) geared motor that also has a 100-CPR optical
encoder attached to the motor’s shaft.

Photo 2—The PIC18F4550 USB controller board acts as a gateway between a laptop and a dsPIC30F4011 motor
controller.

2708020ramirez.qxp 8/6/2007 5:05 PM Page 28

http://www.circuitcellar.com
http://www.ecs87.com/sfclib

www.silabs.com

Product details: www.silabs.com/SmallMCU

Fully Loaded, Small Form Factor MCUs
Silicon Laboratories’ mixed-signal MCUs combine a high-speed 8051

CPU, Flash memory and best-in-class analog peripherals in ultra-small

packages allowing designers to reduce component count while improving

system performance. These highly-integrated, feature-rich devices are

optimized for space-constrained, low-power, cost-sensitive applications.

MCUs TIMING POWER BROADCAST WIRELINE WIRELESS

9 mm2 2 2

32 kB

16 kB

8 kB

16 mm 25 mm

Fl
a

sh

Size

Highest
Functional Density

• 8–24 Bit ADC

• 2–32 kB Flash Memory

• 25–100 MIPS 8051 CPU

Low-Cost, Professional Tools

Complete development kits (including in-

system debug and integrated development

environment) make development quick and

easy. Low-cost evaluation kits and reference

designs simplify evaluation and accelerate

time-to-market.

29.qxp 8/6/2007 5:07 PM Page 1

http://www.silabs.com
http://www.silabs.com/SmallMCU

�

�
�

�
�

�
�

�
�
�

�

�

�
� �

�

�

�

�

�
�
�
��
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�

�
�

�

�

�
�
�

30.qxp 8/6/2007 5:08 PM Page 1

http://www.jameco.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 31

Figure 3—The dsPIC30F4011 motor controller schematic
shows the construction details for making the DC motor con-
troller board, shown in Photo 4. I wire-wrapped a prototype
version of the same board.

2708020ramirez.qxp 8/6/2007 5:05 PM Page 31

http://www.circuitcellar.com
http://www.parallax.com

32.qxp 8/6/2007 5:09 PM Page 1

http://www.mouser.com/ftdi/a
http://www.mouser.com/lantronix/a
http://www.mouser.com/tyco/a
http://www.mouser.com/flexipanel/a
http://www.mouser.com/tyco/a
http://www.mouser.com
http://www.mouser.com/multitechsystems/a

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 33

bus (see Figure 2). The PIC18F4550
now takes the role of SPI master and
communicates with the dsPIC30F4011
motor controller, which functions as
an SPI slave via the 8-bit SPI bus.

The PIC18F4550’s I/O pins are used
for SPI communication (RB0/SDI,
RC7/SDO, RA5/SS_BAR, RB1/SCK, and
RE0/BUSY). The corresponding motor
controller dsPIC30F4011’s pins used for
SPI include RF3/SDO, RF2/SDI,
SS1_BAR/RB2, RF6/SCK1, and
BUSY/RB8, as shown in the connection
diagram. Just make sure that the SDO
outputs connect to the corresponding
SDI inputs from each controller.

I found it necessary to insert a 1-kΩ
resistor in series with the SS_BAR
(slave select) line in order to obtain
reliable SPI communication between
the two controllers. In addition, I
added a busy line that is polled by the
firmware and is used to indicate when
a motor command has been processed.

Functions from Microchip’s SPI C
libraries are used to read and write
data or outgoing data over the SPI bus.
The PIC18F4550 is configured as the

SPI master, while the
dsPIC30F4011 is config-
ured as the SPI slave
peripheral, using an inter-
rupt service routine (ISR).
These routines wait for an
SPI interrupt generated
when a byte of data arrives
and are used to store data
in an SPI Rx buffer. A
complete message of 64
bytes is processed as a
motor message.

MOTOR CONTROLS
I plan to add three poten-

tiometers to the motor con-
troller board, so in addition
to reading the latest
encoder counts, the
firmware will enable the
user to read up to three
analog inputs connected to
three potentiometers,
which act as motor con-
trols (see Figure 3). These
potentiometers should
make it easier for the oper-

Figure 4—The LMD18200T
H-bridge PWM motor driver
board schematic shows the
circuit required to drive the
RH-5A-5502 geared DC
motors used on the tilt/pan
platform.

Visit us at
ESC Boston
Booth #321

2708020ramirez.qxp 8/6/2007 5:05 PM Page 33

http://www.circuitcellar.com
http://www.pcb-pool.com

34 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

ator to adjust the motor posi-
tion, velocity, direction, and
acceleration during Opera-
tional and Calibration modes.

These controls will help
reduce the time spent during
the calibration “fine tuning”
process, which by nature,
requires much iteration. They
enable the user to modify the
KP, KI, and KD constants as
needed in order to bring the
“plant” under PID control.

The three potentiometers are an
optional feature that require software
to be written, which I plan to do in the
future.

DC-GEARED MOTORS
The RH-5A-5502 geared DC motor

comes attached with a 100-CPS
encoder with an ultraflat gear head
and zero backlash (see Photo 3). The
motor’s features make it ideal for mir-
ror-smooth motions required for point-
ing devices, such as security cameras,
web cams, and distance-measuring
devices. They were salvaged from sur-
plus scanner equipment that I found at
a local electronics surplus store. The
rated torque for each Harmonic Drive
RH-5A-5502 is 0.29 Nm, the maximum
speed of rotation is 110 RPM, and the
rated speed of rotation is 55 RPM.

QUAD ENCODER INTERFACE
The next step towards obtaining

precise motor speed or position con-
trol is to use some kind of sensor feed-
back that indicates the motor’s actual
speed and direction. The sensor usually
used for this purpose is called an opti-
cal encoder (see Photo 3). Other types
of encoders exist, such as rotary
encoders and magnetic Hall-effect
encoders, in addition to variable resistors,
which can provide a resistance or voltage
value proportional to the number of turns
it has made. These encoders are connect-
ed to the shaft of the motor whose speed
and direction is being monitored. The
most common encoders are absolute
encoders and relative encoders. Absolute
encoders provide the actual position and
direction while relative encoders provide
the number of counts and direction.

MOTOR CONTROLLER BOARD
The dsPIC30F4011-based motor con-

troller board, shown in Photo 2, is the
heart of this project. It drives the com-
plementary PWM outputs, as required,
to control the motor’s speed and direc-
tion and also read the optical encoder via
the QEI interface. In addition, it also
reads three potentiometers connected to
three analog channels (AN0–AN2) from
the 10-bit ADC. It also has two UARTS,
two SPI ports, and one I2C port. After
examining the block diagram, you can
see how the two microcontrollers com-

Photo 4—This photo shows the double-sided motor controller PCB
that I recently completed. It works just like the wire-wrapped ver-
sion, but it is easier to build.

2708020ramirez.qxp 8/6/2007 5:05 PM Page 34

http://www.circuitcellar.com
http://www.r4systems.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 35

municate via the 8-bit SPI bus. The 16-
bit IC is truly an exceptional product.
The on-chip DSP makes this microcon-
troller ideal for number crunching PID
control loops and general floating-point
number crunching using IEEE 754 float-
ing-point support.

The board is shown in Figure 3. It uses
a standard DIP 40-pin IC, which makes
the construction easier than the current
SMT TQFP form factor. Wire-wrap tech-
niques were used to make the original
working prototype.

PCB DESIGN
The double-sided 3″ × 4″ PCB was not

ready in time for this article, but you
can see the progress I’ve made in
Photo 4. Advanced Circuits made
three boards for $99. They did a great
job and were a pleasure to work with.

As you can see, it’s a high-quality
board. The design and PCB layout was
done using Cadsoft’s Eagle CAD,
which I highly recommend. It is possi-
ble to make a more compact USB
motor controller board that includes
the USB controller and the motor con-
troller, but I have not had a chance to
do so.

MOTOR DRIVER BOARD
The dsPIC30F4011 uses two PWM

channels to drive the DC motors used on
the tilt/pan platform using a 10-bit PWM

motor control channel to control the duty
and frequency of the motors. The motor
speed is increased or decreased by varying
the PWM signal pulse width. The PWM
output from the dsPIC30F4011 directly
drives a dual-LMD18200T PWM H-
bridge motor driver board that can han-
dle up to 50 VDC and currents as high
as 3.5 A (see Photo 2).

The H-bridge circuit in Figure 4 was
used to build this board. I used heavy
gauge wire-wrap, although it can be
built using standard PCB techniques
and components using “thick” traces
with wide pads recommended for
power signals that connect directly to
the DC motors. This will ensure a
very compact DC motor controller. A
complete H-bridge circuit is required
for each DC motor that will be used to
control up to a maximum of two DC
motors. The H-bridge circuits may be
placed on the same PCB as long as
there is room for heatsinks (attached to
each LMD18200T H-bridge driver IC).

POWER SUPPLY
The USB cable supplies enough power

for both controller boards, but I used a
separate 5-V power supply for the
dsPIC30F4011, the dual H-bridge board,
and the 5-VDC motors. The motor sup-
ply is actually a rechargeable 6-V
sealed lead acid (SLA) battery. Using
higher-voltage 12- and 24-V motors

would require additional changes to the
dual-H-bridge motor driver board.

MOTOR MESSAGES
In order to communicate effectively

between the 8-bit PIC18F4550, the 16-bit
dsPIC30F4011, and the 32-bit laptop
processors, I defined the simple mes-
sage data structures in Listing 1 in
Ada95 and Listing 2 in Microchip C30
C. A checksum field and some simple
checksum logic was added to validate
messages sent and received.

Both files need to have data struc-
tures that are functionally identical to
guarantee that the message gets across
without data corruption; otherwise, the
motor controller will ignore the message
if the checksum sent does not agree
with the checksum received. This fea-
ture should help the USB motor con-
troller deal with the electrical noise gen-
erated by the motor’s carbon brushes.

Each message is limited to 64 bytes to
match the 64-byte USB endpoint buffer
used in the Microchip USB drivers.

TEST MESSAGES
The USB motor controller has vari-

ous hardware and software compo-
nents that require testing before the
controller becomes operational. They
include the host GNAT Ada95 test
application, which runs on the laptop.

The motor test application, running
on the laptop, issues
open-loop motor com-
mand messages to the
USB motor controller.
The messages gradu-
ally ramp the motor
from rest to its fastest
speed of 0 to 1,023 for
the PWM duty cycle
in order to slowly
accelerate the motor
from rest to its top
speed. Then, it sends
a reverse ramp 1,023
down to 0 to slowly
decelerate the motor
to a full stop. The test
is repeated continu-
ously until the appli-
cation is terminated
or another test is
selected.

A motor-direction

Listing 1—This is an example of the GNAT Ada95 message data definitions required to communicate between the Ada application running on
the laptop and the embedded Microchip USB application that runs on the PIC18F4550.

— Message Motor buffer type
type MOTOR_BUFFER_TYPE is array (1 .. MAX_MOTORS) ofwin32.ULONG;

—***
—* Dmm,xxxx - Send PWM duty command message range xxxx (0000..FFFF) to motor
—* mm range (00..01). This command is used to vary
—* the motor speed and direction.
—***
type DUTY_COMMAND_TYPE is
record

Field_1 : Win32.WORD; — Start of message field +1
MessageID : Win32.WORD; — Message ID range (0000 - FFFF) Hex +1
Command : Win32.WORD; — Duty Command to SPI Slave +1

— (see enumeration declaration above.)
NumberOfMotors : Win32.WORD; — Total number of motors range (0..MAX_MOTORS) +1
Duty : MOTOR_BUFFER_TYPE; — Duty Cycle range (00000000 - FFFFFFF) Hex +12
EncoderCounts : MOTOR_BUFFER_TYPE; — Encoder counts for each motor

— range (00000000 - FFFFFFFF) Hex +12
DirectionFlags : Win32.WORD; — Direction bits for each motor (CW=0, CCW=1) +1
StatusFlags : Win32.WORD; — Status bits +1
Filler : PADDING (1 .. 4); — Padding (total of 34 words) +2

— –––
— 32 Words

end record;

2708020ramirez.qxp 8/6/2007 5:05 PM Page 35

http://www.circuitcellar.com

36 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

test slowly changes the motor direction
from clockwise (CW) to counterclock-
wise (CCW) and repeats, causing the
motor to oscillate forward and back-
ward. This test is repeated continuously
until the application is terminated or
another test is selected.

The final test issues commands to
tilt and pan the motors to a specific
orientation by panning the sensor plat-
form 0° to 360°, using the pan motor
and tilting the platform ±90°, using
the tilt motor with the 100-CPR opti-
cal encoders, and using 4× decoding to
ensure accuracy.

PID CONTROL
The 16-bit (30-MIPS) dsPIC30F4011

is quite capable of running a propor-
tional integral derivative (PID) control
loop on its own using the on-chip digi-
tal signal processing (DSP) hardware, as
the Microchip application notes show.
Fred Martin’s Robotic Explorations: A
Hands-On Introduction to Engineer-
ing has a simplified PID example that
provides insight into open loop, closed
loop, and PID control of DC motors
for robotics applications.

I also wanted to run PID loops from
the laptop or PC host via the USB inter-
face because my laptop is capable of
1.7-GHz processing speeds. It also pro-
vided me with the ability to experiment
with advanced fuzzy logic control. In
fact, Microchip has a reference design for
a fuzzy logic-based air flow controller.

As for motor controller applications,
Microchip came through again with a
few PID-related application notes that
can be directly flashed onto the board
using the ICD2. The tachometer appli-
cation in particular provides the user
the ability to measure a motor’s RPM,
speed, and position. The high-level
PID and fuzzy logic motor commands
are received from the laptop as motor
control messages.

Position, speed, velocity, and accelera-
tion commands can be executed using
closed-loop control, leaving the motor
controller to maintain the PID control
loops by flashing Microchip’s PID algo-
rithms for various kinds of motors direct-
ly to the dsPIC30F4011 motor controller
using the ICD2 debugger/programmer. In
order to make the tuning process easier,
it is recommended that motors be select-

ed with similar specifications to those
used in the Microchip reference designs.

SOFTWARE DEVELOPMENT
The mandated Ada language was origi-

nally developed during the early ’80s,
starting with Ada83, a standard language
to replace the legacy COBOL and FOR-
TRAN languages and promote code
reuse across various U.S. government
agencies. Unfortunately, the language
has fallen out of favor in the U.S. due in
part to the new commercial off-the-
shelf (COTS) mandate that leaves only
C, C++, and JAVA for development
because they are the languages widely
used in commercial software develop-
ment these days.

The latest language release is
Ada95, although there is Ada2005 work
going on in Europe where Ada is still
widely used. Surprisingly, another area
where Ada95 is being used is for pro-
gramming the massively parallel super
computers used in research and astrono-
my as a replacement for FORTRAN.

The GNAT Ada95 tool suite is freely
available on the Internet. It provides all
the necessary tools to generate robust
Ada-based applications using the Win-
dows XP environment in a similar man-
ner to C# and Visual C++. A simple

motor test control loop listing that
varies the motor duty cycle by issuing a
ramp 0 to 1,023 to the motor is posted
on the Circuit Cellar FTP site.

FIRMWARE
The embedded software is supplied in

Microchip hex and Intel format for both
the PIC18F4550 and the dsPIC30F4011
boards. The tool required to build and
program the motor controller is the
Microchip ICD2, which is available for
around $120. Also needed is the MPLAB
IDE, which contains an in-circuit serial
programmer (ICSP), a simulator, and
an in-circuit debugger (ICD to flash
and debug the applications).

The PIC18F4550’s firmware was devel-
oped using the student edition of the
PIC18 C compiler. The dsPIC304011’s
firmware was developed using a 60-day
demo of C30 C. Both applications used
MPLAB and the in-circuit debugger
(ICD2) to flash memory and debug the
applications. The C source code for
both controllers is available on the
Circuit Cellar FTP site. You may also
want to download the dsPIC30 C com-
piler (60-day demo), which is needed
only if you plan to customize or modi-
fy the C sources because I provide the
necessary hex files.

Listing 2—This listing shows how the corresponding C messages are defined that enable communication
between the Ada application and the dsPIC30F4011 microcontroller via the PIC18F4550 microcontroller.

//***
//* Dmm,xxxx - Send PWM duty command message range xxxx *
//* (0000..FFFF) to motor mm range (00..01). This command is *
//* used to varythe motor speed and direction. *
//***
typedef struct duty_command_type
{

word Field_1; // Start of message field

word MessageID; // Message ID range (0000 - FFFF) Hex

word Command; // Duty Command to SPI Slave (see enumeration

// declaration above.)

word NumberOfMotors; // Total number of motors range
// (0..MAX_MOTORS)

word Duty[MAX_MOTORS]; // Duty Cycle range (0000 - FFFF) Hex

word EncoderCounts[MAX_MOTORS]; // Encoder counts for each motor
// range (0000 - FFFF) Hex

word DirectionFlags; // Direction bits for each motor (CW=0, CCW=1)

word StatusFlags; // Status bits

word Filler[17]; // Padding (total of 34 words)

} DUTY_COMMAND_TYPE;

2708020ramirez.qxp 8/6/2007 5:05 PM Page 36

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 37

On the PIC18F4550, you can see the
section of code that handles the USB
message received from the laptop and
routes it to the SPI port, which then
directs it to the dsPIC30F4011. The
source code provides all the necessary
communications and motor message
processing required to make the boards
function as an integrated USB motor
controller.

The firmware application is written in
Microchip C30 C on the dsPIC30F4011.
Again, only the main loop is shown on
the dsPIC30F4011, computing the mes-
sage checksum, checking its validity,
and processing the message.

MOTOR TEST BENCH APPS
The motor test bench application is

the firmware from Microchip applica-
tion note GS002 that is flashed on a
dsPIC30F4011 using the ICD2. It enables
you to measure a motor’s position or
angles, speed (tachometer), and direction
(forward or backward) using the encoder
counts generated by the QEI peripheral
from a dsPIC30F4011 motor controller
board. Using my own versions of the

firmware, I have been able to successful-
ly control DC motors in Open Loop
mode using the PWM peripheral and
return encoder counts using the QEI.

Ada95 HOST APPLICATION
The host application runs on the lap-

top and sends motor control messages to
the USB motor controller using the
COM3 serial port on my laptop, but it
may differ on other machines. It is a
work in progress using the Ada95 with
the message data structures mentioned
earlier. This application integrates the
PIC18F4550 with the dsPIC30F4011.
The application can be translated to any
other computer language that supports
the PC’s serial ports (COM3 and COM4).

The Ada95 host application runs
from the laptop as either a standalone
Windows application *.exe or directly
from the GNAT Ada95 IDE. (The
motor control loop listing is posted on
the Circuit Cellar FTP site.) The appli-
cation uses other Ada packages that
are not shown in the listing, but they
are included with the source code.

The host motor controller applica-

tion issues PWM commands that
move the motor from rest to its high-
est speed and then back down to rest
by issuing a ramp 0 to 1,023 and then
issuing a ramp 1,023 back to 0.

I also provide an example of an
Ada95 exception handler that is used to
handle run-time errors due to various
factors. It includes an exception handler
for bad user input and for the motor
commands that exceed their limits
using Ada constraint (range) checking.

This is an excellent feature where
each Ada variable is checked against
its initial minimum, maximum, and
nominal ranges and also checks its
type. A constraint error will be gener-
ated when the value exceeds 1,023 or
is less than 0. In this case, the excep-
tion handler limits the value and dis-
plays a warning message to the operator.

TEST RESULTS
Connecting one or two DC motors

with attached encoders to the JP1and
JP2 encoder headers tests the complet-
ed hardware. First, the motor PWM fre-
quency and direction (forward and

Order Online:

www.circuitcellar.com
 or call 860.875.2199

back issues available as

Searchable Archives
on CD-ROM

CD-ROM #11 2006 Issues 186-197
CD-ROM #10 2005 Issues 174-185
CD-ROM #9 2004 Issues 162-173

NOW SHIPPING:

Linear IC Technology

Introductory Circuit Analysis

Op-Amp Design Techniques

ELECTRONIC
COMMUNICATIONS

MATHEMATICS
IN ELECTRONICS

To update your professor account or to find

out more about our college program, visit

www.circuitcellar.com/products/collegeprogram/

PROFESSORS
The Circuit Cellar college program
puts quality engineering information
in the hands of your students every
month. Sign up now to get
Circuit Cellar distributed to your
class this semester.

2708020ramirez.qxp 8/6/2007 5:06 PM Page 37

http://www.circuitcellar.com/archives/backissuescd.html
http://www.circuitcellar.com/subscriptions/college.html
http://www.circuitcellar.com

%20BLDC%2000901a.pdf.

———, “AN908: Using the dsPIC30F
for Vector Control of an ACIM,”
DS00908A, 2004, ww1.microchip.com
/downloads/en/AppNotes/ACIM%20
Vector%20Control%2000908a.pdf.

———, “AN957: Sensored BLDC
Motor Control Using dsPIC30F2010,”
DS00957A, 2004, ww1.microchip.com/
downloads/en/AppNotes/BLDC%20MC
%2000957a.pdf.

———, “AN984: An Introduction to
AC Induction Motor Control Using
the dsPIC30F MCU,” DS00984A,
2005, ww1.microchip.com/downloads
/en/AppNotes/AC%20Induction%20
Motor%2000984a.pdf.

———, “AN992: Sensorless BLDC
Motor Control Using dsPIC30F2010,”
DS0092A, 2005, ww1.microchip.com/
downloads/en/AppNotes/00992A.pdf.

———, “GS002: Measuring Speed and
Position with the QEI Module,”
DS93002A, 2005, ww1.microchip.com
/downloads/en/devicedoc/93002A.pdf.

———, “PICDEM FS USB Demonstra-
tion Board User’s Guide,” DS51526A,
2004, ww1.microchip.com/downloads/
en/devicedoc/51526a.pdf.

RESOURCES
J. Barnes, Programming in Ada: Plus
an Overview of Ada 9X, Addison-
Wesley Publishing Company, 1994.

R. Graham, “FAQ on PID Controller
Tuning,” The College of New Jersey,
www.tcnj.edu/~rgraham/PID-tuning.
html.

G. Lucas, “Using a PID-based Technique
for Competitive Odometry and Dead-
Reckoning,” Encoder: The Newsletter
for the Seattle Robotics Society,
www.seattlerobotics.org/encoder/200108
/using_a_pid.html.

Microchip Technology, Inc.,
“PIC18F2455/2550/4455/4550 Data
Sheet,” DS39632D, 2007.

———, “dsPIC30F4011/4012 Data
Sheet,” DS70135E, 2007,
ww1.microchip.com/downloads/en/
DeviceDoc/70135E.pdf.

———, “AN956: Migrating Applica-
tions to USB from RS-232 UART with
Minimal Impact on PC Software,”
DS00956B, 2004, ww1.microchip.com
/downloads/en/AppNotes/00956b.pdf.

———, “AN600: Air Flow Control
Using Fuzzy Logic,” DS00600B, 1997,
ww1.microchip.com/downloads/en/
AppNotes/00600b.pdf.

———, “AN901: Using the dsPIC30F
for Sensorless BLDC Control,”
DS00901A, 2004, ww1.microchip.com
/downloads/en/AppNotes/Sensorless

SOURCES
Eagle Light Edition
Cadsoft Computer
www.cadsoftusa.com

RH-5A-5502 DC Servo system
Harmonic Drive
www.harmonicdrive.net

Vex robotics design system
Innovation First, Inc.
www.innovationfirst.com

DM163025 PICDEM USB demo
board, dsPIC30F4011 DSC,
PIC18F2455, PIC18F452, and
PIC18F4550 microcontrollers
Microchip Technology, Inc.
www.microchip.com

LMD18200T Motor driver board
National Semiconductor Corp.
www.national.com

SW-P-WOC NightHawk camera
Swann Communications, Inc.
www.swannsecurity.com

Daniel Ramirez is a senior software
engineer at Raytheon with over 15
years of experience working on real-
time embedded systems. He has a
B.S. in Computer Science and an M.S.
in Engineering from Northeastern
University. His hobbies include
watching old movies, antiques, travel,
golf, photography, and Vex robotics.

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2007/206.

backward) is specified and PWM com-
mands are sent to the selected motor. It
should start running at the speed select-
ed. The motor ID value is required to
select the motor being commanded.
When I powered up the hardware, I saw
the motors speed up, slow down, and
stop as I expected. In addition, I sent the
DC motor controller messages to
change the PWM frequency (period) and
messages to return each motor’s state.
These all worked fine in my application.

LOOKING AHEAD
As you can see, the USB interface

provides a convenient gateway to the
embedded USB motor controller hard-
ware that enables a laptop or PC to
issue high-level commands in order to
harness the incredible gigahertz pro-
cessing available in today’s PCs and
laptops using Microchip’s elegant USB
serial port solution. Now the laptop
can be used for processing the algo-
rithms, while the embedded controller
handles the timing, reads the sensors,
and generates the necessary PWM
waveforms. GNAT and Ada95 can be
used for developing the host applica-
tion on the laptop, while the
Microchip PIC18 C and dsPIC C30 C
compilers are used exclusively to
develop the embedded firmware.

Another idea that I am exploring (for
the closed-loop PID control of two or
more DC motors at the same time) is
to use the USB and SPI interfaces via a
PIC18F4550-based motor controller. I
could then use it to connect a PC or
laptop to two or more dsPIC30F4011
motor controller boards networked via
the SPI bus and run multiple instances
of rehosted PID closed-loop control
using Windows NT, XP, or Linux using
GNAT Ada, C++, and JAVA, which sup-
port multitasking or multithreading.
The data is passed from the PC or lap-
top to the DC motor controllers via the
USB bus using the motor messages.
The motor ID is used to select which
motor to send commands to and also
to receive encoder counts feedback.

You can use the USB motor con-
troller as a test-bed for learning about
the latest PID and fuzzy control of DC
motors. This article scratches only the
surface of using a laptop to control
external devices. In a future article, I

might go into more detail about using
the Ada95 as an alternative develop-
ment language for controlling embed-
ded devices from a PC or laptop with
emphasis on software safety. I

www.circuitcellar.comCIRCUIT CELLAR®38 Issue 206 September 2007

2708020ramirez.qxp 8/6/2007 5:06 PM Page 38

http://www.tcnj.edu/~rgraham/PID-tuning.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.cadsoftusa.com
http://www.harmonicdrive.net
http://www.innovationfirst.com
http://www.microchip.com
http://www.national.com
http://www.swannsecurity.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/206
http://www.circuitcellar.com
http://ww1.microchip.com/downloads/en/DeviceDoc/70135E.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00956b.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00600b.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Sensorless%20BLDC%2000901a.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Sensorless%20BLDC%2000901a.pdf
http://ww1.microchip.com/downloads/en/AppNotes/ACIM%20Vector%20Control%2000908a.pdf
http://ww1.microchip.com/downloads/en/AppNotes/BLDC%20MC%2000957a.pdf
http://ww1.microchip.com/downloads/en/AppNotes/AC%20Induction%20Motor%2000984a.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00992A.pdf
http://ww1.microchip.com/downloads/en/devicedoc/93002A.pdf
http://ww1.microchip.com/downloads/en/devicedoc/51526a.pdf

3.qxp 5/31/2007 9:17 AM Page 1

http://www.rabbitkits-wireless.com

56-57.qxp 7/2/2007 10:52 AM Page 1

56-57.qxp 7/2/2007 10:52 AM Page 2

http://www.embeddedarm.com

42 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

a header file or directly into the C
source, depending on the size of the
project. C language defaults the com-
mon variable types to signed, but my
need for signed variables in embedded
designs is fairly rare. First, I create
shorthand definitions for unsigned
variables by prefixing a lowercase u,
yielding uchar, uint, and ulong
types. My lengthof macro is safer
than sizeof to determine index lim-
its for arrays, and it is lower mainte-
nance than declaring a macro or con-
stant for each size. It also works on
multiply-dimensioned arrays, arrays of
structures, and so on. If I declare
ulong A [4] [7] [123] [12], then
lengthof (A [1] [2]) returns 123,
the correct number of entries for the
next index.

In any project involving communi-
cation between two devices, you will
need to pick variables and structures
apart into bytes. The lobyte, hibyte,
loword, and hiword macros provide an
intuitive and portable way to extract
pieces of variables up to 32 bits long. As
a bonus, most compilers allow them on

Last month, I discussed some of the
challenges associated with taking a labo-
ratory prototype into the real world
and turning it into what is now the
ThermaWing system, which is an elec-
tric ice protection system for small to
medium aircraft. This month, I’ll put
the pieces together and describe how to
build a 1-Wire master by making the
hardware and firmware play nicely.
Then, I’ll look at some of the application
structures that build on that foundation
to take full advantage of the 1-Wire bus
(and the available slave chips) to address
many of the application challenges.

FIRMWARE TECHNIQUES
Before I dive into the code, I will

explain some coding techniques so you
can understand the listings. I use slight-
ly unconventional techniques that
make for more readable and maintain-
able code. The techniques also make it
easier to get it right the first time.

I’ve learned to write my firmware (and
all of my design documentation) with
the “cement mixer syndrome” in mind.
That comes from a former boss who
insisted that I always document my
work just in case I get hit by a cement
mixer and somebody else has to continue
onward. As a consultant, I see the value
in this approach every time I’m called in
to solve a problem where the original
developers are long gone. I sometimes
get a call to do the next revision of a
product that I designed for a company
two acquisitions and a couple of years
ago. The value of clear documentation
becomes obvious at that point as well!

I have a few standard definitions
that I automatically insert into either

the left-hand side of an assignment. To
adapt these macros when changing
between Little Endian and Big Endian
processors, you need only to swap the
0 and 1 subscripts. The offsetin
macro uses the compiler to derive the
exact memory offset to locate a partic-
ular item within a structure in a way
that is guaranteed by the language to be
consistent with whatever address assign-
ment the compiler has generated. The
macro is highly useful when you need to
generate a numeric EEPROM address to
be passed to read and write routines.

To allow temporarily suspending
interrupts during a critical code section,
the SuspendInts and RestoreInts
macros provide a consistent way to
save and restore the interrupt state
and help keep the bookkeeping
straight. Note the unmatched opening
brace in SuspendInts. The opening
brace enables you to declare a local
auto variable where you save the
interrupt context and forces the com-
piler to help you match it with the
similarly unmatched closing brace in
RestoreInts. You can circumvent

FEATURE ARTICLE by Steve Hendrix

1-Wire in the Real World (Part 2)

Steve continues explaining how he turned a laboratory prototype into an electrically powered
ice protection system for aircraft. He describes how he built a 1-Wire master and then cov-
ers some of the application structures that take full advantage of the 1-Wire bus.

The Solutions

Listing 1—Here are some 1-Wire family codes. Note the use of a C language enum construction rather than
a more conventional series of #define declarations.

typedef enum
{
fcDS2401 = 0x01,
fcDS2423 = 0x1D,
fcDS2409 = 0x1F,
fcDS2450 = 0x20,
fcDS2438 = 0x26,
fcDS18B20 = 0x28,
fcDS2751 = 0x51,
fcUnknown = 0xFF,
}

FamilyCodeT;

2708014Hendrix.qxp 8/7/2007 8:57 AM Page 42

http://www.circuitcellar.com

the protection by branching out of the
construction in the middle, but being
a good structured programmer, I
wouldn’t do such a thing, would I?

The C language enum declaration is
underused. I use it in the downloadable
1-Wire code to provide a number of use-
ful identifiers. For instance, Listing 1
shows how I declare the family codes,
which comprise a portion of each 1-Wire
serial number. Other declarations in
the downloadable code provide read-
able identifiers for each of the 1-Wire
ROM commands and function com-
mands. I abhor the all-too-common
lists of #define declarations to pro-
vide readable identifiers for port assign-
ments, hardware registers, and so on.

When I declare an enumerated type
that might be used as an array index
or I have to iterate over the type or
check limits, I declare the enum with
an extra member specifying the num-
ber of valid entries, like I do with the
Branches member of this enum that
supports iteration:

typedef enum {brMain, brAux, Branches}
BranchT;

I can then iterate over the group with a
construction (i.e., i = 0; i < Branches;
++i) and the compiler keeps every-
thing neatly sorted out, even if I add
or remove items in the enum.

Finally, I have a pet peeve against
those who declare arrays using a plu-
ral name for the identifier. Although
it’s natural to call it “Devices” at the
point of declaration because the pro-
grammer is thinking of a collection of
information about all the “Devices,”
the declaration appears once, whereas
the name is used many times in the
code. At those numerous points of
use, I am almost always referring to a
single device, such as Device [3],
which is then readily pronounced
“Device 3.” That is much closer to
the real meaning than “Devices 3,”
which doesn’t make grammatical
sense. I reserve the plural form of the
identifier for the count of how many
entries are present in the array, most
often when the number of valid
entries changes dynamically (the
lengthof macro takes care of the
static case). Thus, I can iterate across

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 43

Listing 2—Check out the 1-Wire bit-level routines. Four macros handle all the microcontroller-specific
manipulations. The ReadBit and WriteBit routines control the timing with very short delay loops
that must be adjusted for clock speed and processor efficiency. Above this level all of the code is complete-
ly portable.

// Low-level 1-Wire Access
#define OneWireSet() {OneWire = 1; OneWireTris = 0;}
#define OneWireClr() {OneWire = 0; OneWireTris = 0;}
#define OneWireFloat() {OneWireTris = 1;}
#define OneWirePullup() {OneWireSet (); OneWireFloat ();}
// OneWire Bus Write a bit
// This routine specifically uses only the LSB of B
void OneWireWriteBit (uchar B)
{
uchar i; // used for delay loops; adj as needed for processor & clock rate
OneWireSet ();
SuspendInts;
OneWireClr ();
if (B & 1)

{
for (i = 5; i; —i);
OneWireSet ();
for (i = 55; i; —i);
}

else
{
for (i = 55; i; —i);
OneWireSet ();
for (i = 5; i; —i);
}

OneWireFloat ();
RestoreInts;
}
// OneWire Bus Read a bit
uchar OneWireReadBit (void)
{
uchar i; // used for delay loops; adj as needed for processor & clock rate
uchar Result;
OneWireSet (); // Ensure bus recovery time
SuspendInts; // Timing is critical here
OneWireClr (); // Leading edge of bit time
for (i = 2; i; —i); // Delay
OneWirePullup (); // Assist the passive pullup
for (i = 8; i; —i); // Delay
Result = OneWire; // Sample state of bit
OneWireTris = 0; OneWire = 0;OneWireTris = 1; // sample time marker

// useful for troubleshooting
for (i = 42; i; —i); // Wait for end of read slot
OneWirePullup ();
RestoreInts; // End of critical section
return Result;
}
// OneWire Bus Reset
// Return true in case of an error (no devices, or bus shorted)
bool OneWireReset (void)
{
uint i; // used for delay loops; adj as needed for processor & clock rate
uchar LastLow;
OneWireSet (); // Drive bus high to start
for (i = 240; i; —i); // Delay
SuspendInts; // Critical timing
OneWireClr (); // Send out reset pulse
for (i = 160; i; —i); // Delay
OneWirePullup (); // Recover to high state
for (i = 160; i; —i) // Watch for presence pulse

if (OneWire == 0) break;
RestoreInts; // Done with critical timing
if (!i) // Handle exception case

{
printf (“No 1-wire devices\n\r”);

(Continued)

2708014Hendrix.qxp 8/7/2007 8:57 AM Page 43

http://www.circuitcellar.com

line low during this time. As soon as
the master releases the line, the active
slave vigorously returns the bus to a
valid low state, which remains stable
throughout the master’s sampling time.

If, on the other hand, the slave returns
a “1” bit, the master has already stabi-
lized the line at a high-level voltage (see
Photo 2). When the bus is released, it is
already high and stable long before the
master samples the state. You can gain
the rapid settling time of a bipolar driver
while still retaining the ability to share
the bus among multiple units. Simply
use a passive pull-up and active-low
drivers, with only the master providing
an active-high drive at exactly the right

the array (i = 0; i < Devices; ++i).
This consistency in variable naming
helps keep everything straight.

LOW-LEVEL 1-WIRE ROUTINES
Listing 2 shows my implementation

of the low-level routines to read or write
a single bit on the 1-Wire bus. All code
listings in this article are for the HI-
TECH Software PICC-18 compiler, but
they also port directly to other readily
available embedded C compilers. If you
are compiling for a Big Endian processor,
such as one from Freescale Semicon-
ductor, change the declarations for
high/low byte/word (as noted in the
comments) and check the compiler
options to be sure that an enum will
compile to a 1-byte object. There is no
embedded assembly language, although
the lowest-level routines include a cou-
ple of timing loops that must be adjust-
ed for a specific clock rate and proces-
sor. Above the bit level, everything is
completely generic.

Note that I cannot publish the com-
plete application code. As a work for
hire, it belongs to my client. The code
I show here reflects my toolkit-level
routines that I incorporated into the
“work for hire” in the interest of sav-
ing my client time and money.

Sending a bit from the master to a
slave is straightforward and matches
the datasheet description. That is, for
a “1” bit, drive the line low for at
least 1 µs and drive it active high
within 15 µs. For a “0” bit, drive the
line active low for at least 60 µs and
then active high. In each case, you
must observe the minimum datasheet
time with the line high before driving
the line low again to start the next bit.

To receive a bit, however, I deviate
slightly from the datasheet recom-
mendations and overcome the reflec-
tion and noise problems I described last
month. The master drives the line low
for 2 µs to generate the start pulse of a
read bit timeslot. It then drives the bus
high for 1 µs and finally releases the line
to a floating state by setting the pin as
an input. If the slave returns a “0” bit,
the bus is momentarily in contention
and at an intermediate (invalid) volt-
age, but neither the master nor a slave
looks at the bus during this interval
(see Photo 1). The slave is driving the

times and never being fooled by a line
reflection or noise.

This active pull-up method will cor-
rupt a bus reset. Therefore, it is not
usable during a reset. Many units can
listen on the bus during a reset. If the
master attempts to drive the line high
and then releases it while a slave is
still asserting the line low, other
slaves may see the signal as the start
of a read bit slot and things get com-
pletely wrapped around the axle. So,
for reset, you must rely completely on
the passive bus pull-up, resulting in
the waveform shown in Photo 3. The
slower bus-rise time causes no prob-
lem for reset because the reset opera-

44 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

Listing 2—Continued.

return 1;
}

// Wait for all devices to end presence pulse, with debounce
for (i = LastLow = 500; i && i + 20 > LastLow; —i)

{
if (OneWire == 0) LastLow = i;
}

OneWirePullup (); // Clean finish
if (!i) // Handle another exception case

{
printf (“1-wire bus stuck low\n\r”);
return 1;
}

return 0; // Reset completed okay
}

Listing 3—Here are some byte transfers on the 1-Wire bus. Bytes are transferred LSB first. The Write routine
shifts bits out of its LSB, while the Read routine enters bits into the MSB, shifting the previously read bits right
as each new bit arrives.

///
// OneWire Write Byte
void OneWireWrite (uchar B)
{
uchar i;
for (i = 8; i; —i)

{
OneWireWriteBit (B);
B >>= 1;
}

}

///
// OneWire Read Byte
uchar OneWireRead (void)
{
uchar i;
uchar Result;
for (i = 8; i; —i)

{
Result >>= 1;
if (OneWireReadBit ()) Result |= 0x80;
}

return Result;
}

2708014Hendrix.qxp 8/7/2007 8:57 AM Page 44

http://www.circuitcellar.com

tion is much rarer and longer than the
normal bit slots.

BYTES AND MESSAGES
With the foundation in place, you

can send a bit of either value and read
a bit returned by a slave. Because the
1-Wire protocol performs almost all
transfers as 8-bit bytes (least-signifi-
cant bit first), the extension to reading
and writing bytes is straightforward
(see Listing 3). Messages are built of
bytes, with some examples of specific
message types shown in the code avail-
able on the Circuit Cellar FTP site.

ENUMERATION
The 1-Wire search algorithm is not as

straightforward. All 1-Wire slaves have a
unique 64-bit address and they all sup-
port the 1-Wire search algorithm.
Because 1-Wire was designed to support
the unannounced appearance and dis-
appearance of units that may or may
not have ever been seen previously, you
need a way to search for an unknown
device. Even if (and that’s a highly
unlikely “if”) you could test 1 million
addresses per second, a brute-force

search of the 64-bit address space
would take almost 600 kiloyears. That’s
a trifle longer than most of my designs
will tolerate! The clever 1-Wire search
algorithm supports searching the entire
address space in such a way that com-
pletely enumerating all devices present
on the bus can be done in less than 25 ms
per attached device. The algorithm is
described in the datasheets. More sub-
tle points aren’t always obvious.

The heart of the 1-Wire search algo-
rithm, along with the nitty-gritty
exception cases that Murphy’s Law
always throws in my face in the real
world, are shown in Listing 4. In a
nutshell, the master broadcasts a com-
mand to all units on the bus,
announcing that you are searching for
addresses. The master then provides
two read slots. Each device replies
with its first address bit in the first
read slot, and the complement in the
second read slot. Because the bus is
passive high and active low, the zeros
always win out in case there are two
devices with different address bits. If
the first read slot returns a zero, there
is some device present and active on

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 45

Photo 1—Note the bus contention for 6 µs as the master provides an active pull-up. The slave returns the line to a solid
“zero” at the sampling time marked by the right cursor, and the slow rise thereafter is provided by the weak passive pull-
up. The bus is finally returned to a solid “one” condition as the master terminates the bit slot with an active pull-up.

���������	

����

������� �	
��
��������������	����������
! "#$ %&'()*+�! ,-./0 %&%*1 +*2 3�%45

678#9�:;</=->�?@=#A4BC<�D 8*E&F G#D 8HF A-I�>�:4>�?/8#J
K 9�L4M�9�=&JNJ�8&9O<�LP9QR�F S�9�L-S�T&F KNUVW ?�J�8&D
RXYZ[7>�\]>�8&9�F =&D^_&_&̀-a#b�RX> Ucd D =4>�T
`-a#b�RX>e\PB-8*f-F Se8->XghF ?�T�i	j Wkl@m YO`-n�o7>e\
RXYZ[7>�\ d ` lOW >�\ d ` lOW `-a&b�Rp>�\qr r r s
tQu4v^wxy IQz-A&F {Pz*8|D L4M�F S}=&A�=&D :�~�8#9
� tp���V���p�Q� �q� �Q�-�P�/�P� � ���*�(�e�P��� �P�

������

���7�����P�����7�H�Q�q�
�Z�� k¡q�	¢7�£�¤�Z�

2708014Hendrix.qxp 8/7/2007 8:57 AM Page 45

http://www.circuitcellar.com
http://www.asix-tools.com
http://www.picservo.com
http://www.decadenet.com

46 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

the bus whose address has a zero in this
position. If the second read slot (the
complement of the address bit) returns a
zero, an active device has a one in this
bit position. If you look at the two bits
another way, the master can detect four
separate cases: 00 means at least one
active device has a “zero,” and another
has a “one” in this bit position. 01
means all active devices have a “zero” in
this bit position. 10 means all active
devices have a “one” in this bit position.
11 means no active devices are present
on the bus (an error condition unless a
device has been disconnected from the
bus in the middle of the search).

The master then answers the 25 cent
(2-bit) sequence by writing either a
“zero” bit or a “one” bit to the bus. All
slaves whose address matches the writ-
ten bit remain active. All others go to
sleep and do not further participate in
the search. The master then issues two
more read slots to search on the next
address bit, repeating for each of the
64 bits. At the end of the search, the
master has discovered the complete
64-bit address of one device on the bus.

The complete downloadable code
implements the search with a Reset

Search routine, which establishes the
initial conditions, and a SearchNext
routine, which returns one complete
address each time it is called. Although

the algorithm is simple in principal,
it’s dastardly difficult to get exactly
right. The difficulty for me was in the
bookkeeping required to ensure that I
traversed every valid branch of the
address tree without either getting
stuck repeatedly traversing the same
address or missing a branch.

After bench-testing the routines
with a limited sample set of slave
devices, I spent several days trou-
bleshooting the wiring in the test air-
craft before discovering that adding a
device over here could disrupt the tra-
versal in such a way that another
device over there would disappear
from the search. The clue that finally
pinpointed the search problem was
that attaching unit X would always
cause unit Y to disappear, even when
they were on separate buses. (The
application implementation used four
microcontroller port pins to provide
four electrically independent buses.)

DISTRIBUTED CONFIGURATION
As I stated in my introduction, a

key issue favoring the 1-Wire bus is a
desire to avoid extra software-certifi-
cation efforts to support different con-
figurations. Therefore, I tried as much as
possible to localize any information that

Photo 3—This is a reset waveform. Note the nice square 480-µs minimum reset pulse from the master, terminated
by an active pull-up. This is followed by the presence pulse from one or more slaves with the slow-rising, trailing
edge provided by the weak passive pull-up.

Photo 2—The active pull-up provided by the master guarantees a clean reading at the sampling point shown by the cursor.

2708014Hendrix.qxp 8/7/2007 8:57 AM Page 46

http://www.circuitcellar.com

42.qxp 6/28/2007 1:02 PM Page 1

http://www.microchipdirect.com
http://www.microchip.com/PIC24

48 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

would be specific to a particular model.
The system design was generic to

virtually all small aircraft, but there
were small differences that I would
have to accommodate for different air-
craft makes and models. System limi-
tations combined with the proprietary
ice-removal algorithm to dictate the
constraints on the minimum and max-
imum size of any one heater. Any air-
craft model has a total amount of ice-
protection area, as well as mechanical
constraints on how that area can be
serviced. For instance, a landing light
can’t be covered up by a heater, which
means one aircraft may require six,
nine, or up to 14 separate heaters for
bigger aircraft. The heater characteris-
tics dictate that the resistance of a
heater will be different than another
with different dimensions. The system
measures the heater resistance to
detect shorts, opens, or damage to the
heater, so the software needs to know
the nominal resistance of each heater
for comparison. All the configuration
information could be stored in the
central controller’s nonvolatile memo-

Listing 4—The core of the algorithm finds a single attached device by serial number. The routine iterates
across the 64 bits of the address using a switch statement to sort out the various conditions possible with zero,
one, or many slaves present on the bus and participating in the search.

///
// Search next device on the 1-wire bus
// Start from SearchSerial and search for next higher address
// Leave SearchSerial set to the found address
void SearchNext (void)
{
uchar Bit;
uchar ZeroDecision;
uchar Result;
ZeroDecision = 0xFF;
if (OneWireReset ())

{
ResetSearch ();
SearchComplete = 1;
return;
}

OneWireWrite (owSearchRom);
for (Bit = 0; Bit < 8 * sizeof SearchSerial; ++Bit)

{
//////////// begin interrupt-blocked section ///////////////
SuspendInts;
Result = OneWireReadBit (); Result <<= 1;
Result += OneWireReadBit ();
switch (Result)

{
case 0: // both bits zero

// differing address bits at this position
if (LastZeroDecision < 8 * sizeof SearchSerial &&

Bit < LastZeroDecision)
{
if (!SearchBit (Bit)) ZeroDecision = Bit;
OneWireWriteBit (SearchBit (Bit));

(Continued)

2708014Hendrix.qxp 8/7/2007 8:58 AM Page 48

http://www.circuitcellar.com
http://www.emacinc.com
http://www.ezpcb.com

Mixed Signal Oscilloscope
Capture and display analog and logic signals
together with sophisticated cross-triggers for
precise analog/logic timing.

Digital Storage Oscilloscope
Dual Channel Digital Scope with industry
standard probes or POD connected analog
inputs. Fully opto-isolated.

Multi-Band Spectrum Analyzer
Display analog waveforms and their spectra
simultaneously. Base-band or RF displays with
variable bandwidth control.

Multi-Channel Logic Analyzer
Eight logic/trigger channels with event capture
to 25nS.

DSP Waveform Generator
Built-in flash programmable DSP based function
generator. Operates concurrently with waveform
and logic capture.

Innovations in modern electronics engineering are leading the new wave of

inventions that promise clean and energy efficient technologies that will

change the way we live.

It's a sophisticated world mixing digital logic, complex analog signals and

high speed events. To make sense of it all you need to see exactly what's

going on in real-time.

BS100U combines analog and digital capture and analysis in one cost

effective test and measurement package to give you the tools you need to

navigate this exciting new frontier.

USB Mixed Signal Oscilloscope
Inventing the future requires a lot of test gear...

...or a BitScope

�

�

�

�

�
Mixed Signal Data Recorder

Record to disk anything BitScope can capture.
Supports on-screen waveform replay and export.�

User Programmable Tools and Drivers
Use supplied drivers and interfaces to build
custom test and measurement and data
acquisition solutions.

�

BS100U Mixed Signal Storage Scope & Analyzer

BS100U includes BitScope DSO the fast and

intuitive multichannel test and measurement

software for your PC or notebook.

Capture deep buffer one-shots, display waveforms

and spectra real-time or capture mixed signal data

to disk. Comprehensive integration means you can

view analog and logic signals in many different

ways all at the click of a button.

The software may also be used stand-alone to

share data with colleagues, students or customers.

Waveforms may be exported as portable image

files or live captures replayed on another PC as if a

BS100U was locally connected.

BitScope DSO Software for Windows and Linux

Standard 1M/20pF BNC inputs Smart POD Connector Opto-isolated USB 2.0 12VDC with low power modes

NEW
MODELNEW
MODEL

www.bitscope.comwww.bitscope.com

Analog + Digital

49.qxp 8/7/2007 8:59 AM Page 1

http://www.bitscope.com

50 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

ry, but that would mean the controller
could not be generic across all models of
aircraft. Instead, I chose to place the con-
figuration information in the nonvolatile
memory of a Maxim Integrated Products
DS2751 multichemistry battery fuel
gauge, which is used to sense heater
temperature, because it would be perma-
nently attached to a particular heater.

Listing 5 is an excerpt from the code
posted on the Circuit Cellar FTP site.
The code enables you to use a high-level
language construction, such as a C lan-
guage structure, as an overlay on the
memory space in a DS2751. The DS2751
includes a block of special function regis-
ters as well as two banks of uncommit-
ted EEPROM and some static RAM. The
typedef for DS2751RegT enables you to
lay out the internal register arrangement
as a C language structure. The structure
can then be used as a member of a larger
structure that may include an array of
bytes covering EEPROM or other struc-
ture members defining specific alloca-
tions of variables. Thus, with care, I can
declare structures and regular C lan-
guage variables within the memory

Listing 4—Continued.

}
else if (Bit == LastZeroDecision)

{
OneWireWriteBit (1);
SearchBitSet (Bit);
}

else // Bit > LastZeroDecision
{
ZeroDecision = Bit;
OneWireWriteBit (0);
SearchBitClr (Bit);
}

break;
case 1: // all active devices have 0 in this bit position

OneWireWriteBit (0);
SearchBitClr (Bit);
break;

case 2: // all active devices have 1 in this bit position
OneWireWriteBit (1);
SearchBitSet (Bit);
break;

case 3: // there are no active devices on the bus (error)
printf (“\n\rNo dev at bit %d\n\r”, Bit);
ResetSearch ();
SearchComplete = 1;
Bit = 0xFE;
break;

}
//////////// end interrupt-blocked section/////////////////
RestoreInts;
}

if (ZeroDecision == 0xFF) SearchComplete = 1;
LastZeroDecision = ZeroDecision;
printf (“\n\r”);
ShowOneWireSerial (&SearchSerial);
}

2708014Hendrix.qxp 8/7/2007 8:58 AM Page 50

http://www.circuitcellar.com
http://www.zigbeemodule.com/cc
http://www.rabbitappkits.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 51

space for variables and clean, readable
access to those variables. One example is
EEPROM that is either at a specified
offset within the main address space (as
on the Freescale Semiconductor micro-
controllers) or that lives in a complete-
ly independent address space (as on the
Microchip microcontrollers). Another is
memory-mapped or even I/O-mapped
registers. Also note that my “offsetin”
macro provides a portable method of con-
verting a structure member’s name into a
numeric address offset to be passed to
the 1-Wire bus, to an EEPROM access
routine, or as a numeric port address.

The deice system application includes
an expanded version of the DS2751’s
structure covering the nonvolatile mem-
ory included in the chip. Additional
fields are included there to specify the
resistance, maximum power, actuation
sequence, manufacture date, and other
information pertinent to the switching
of the particular heater. One oddball
configuration item is the total number
of heaters expected in the system.
Unlike the other parameters that are
specific to one heater, this parameter
applies to the system as a whole and not
to any one heater. I decided to store the
expected number of heaters in every
switch and to verify, as the system is ini-

Listing 5—This is a C language construction for the DS2751 registers. This structure was extended in the final
application to include configuration information stored in the DS2751’s EEPROM. The structure declaration sup-
ports the use of the offsetin macro, described above, to generate a numeric address for issuance in a 1-Wire
command or to read or write within the DS2751 address space.

typedef struct
{
uchar Reserved00;
uchar Status;
uchar Reserved02;
uchar Reserved03;
uchar Reserved04;
uchar Reserved05;
uchar Reserved06;
uchar Eeprom;
uchar SpecialFeature;
uchar Reserved09;
uchar Reserved0A;
uchar Reserved0B;
int Voltage ; // units of 152.588 µV (±5 V FS)
int Current ; // units of 1.953125 µV (±64 mV FS)
int CurrAccum; // units of 6.25 µVH (±204.8 mVH FS)
int Reserved12;
int Reserved14;
int Reserved16;
int Temperature; // units of 1/256 ºC (±128ºC FS)
int Reserved1A;
int Reserved1C;
int Reserved1E;
}

DS2751RegT;

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2007/206.

SOURCES
PICC-18 Compiler
HI-TECH Software
www.htsoft.com

DS2751 Multichemistry battery fuel gauge
Maxim Integrated Products, Inc.
www.maxim-ic.com

Steve Hendrix, P.E., CFIAI, lives with
his wife Kathy and five children, ages
three through 21, next to Cuyahoga
Valley National Park in Ohio. When
he isn’t busy hiking with them in the
Park, leading Boy Scouts, foster par-
enting, or ringing handbells, he runs
Hx Engineering, LLC. Steve has
designed software and hardware for
various projects: Space Station Free-
dom, vibration analysis, IEEE-488 bus
hardware, biomedical sensing (includ-
ing wireless EEG, EKG, and EMG
recorders), industrial instrumentation,
and phototherapy equipment.

tialized, that all modules agree on the
expected number of heaters. Any dis-
agreement clearly indicates a problem,
whether it’s an installation error or cor-
rupted memory. As long as all the
switches agree on the number of switch-
es that should be present, the con-
troller can signal a fault if the config-
ured number of heaters doesn’t appear
during the search of the 1-Wire bus.

IMPROVEMENTS
The 1-Wire communication protocol

seems to lack a reputation for reliabili-
ty. With proper techniques in the mas-
ter end, however, it can be made quite
reliable even on long wires in a hostile
electrical environment. The added ben-
efits of a guaranteed (by Maxim Inte-
grated Products) unique serial number
for traceability and distributed configu-
ration information storage made 1-Wire
an ideal fit for this application. Some-
day I’ll get one of those “round tuits”
and be able to implement a few of the
dozens of 1-Wire projects that I keep
thinking of as I read the newsgroups! Imap of such an external device.

The primary caveats to this
approach are that the compiler issues
no warning if your structure exceeds
the available memory or if it is mis-
aligned with the actual registers, and
that different compilers may use dif-
ferent physical memory sizes for the
same variable types. All the compilers
I’ve used on small embedded projects,
however, treat a char as 8 bits, an
int as 16 bits, and a long as 32 bits.
Where a variable is larger than 1 byte,
the programmer also needs to be aware
of the allocation strategy used by the
compiler to create multibyte variables.
Such a variable can have the least sig-
nificant byte at the lowest memory
address or the most significant byte at
the lowest memory address. These
arrangements are commonly referred to
as Little Endian or Big Endian. Proces-
sor architecture guides but rarely man-
dates the choice. Compilers targeting
Freescale Semiconductor processors
typically use Big Endian, while compil-
ers targeting Microchip Technology
processors usually use Little Endian.

As a side note, the technique is
highly useful any time I need to allo-
cate addresses in a separate address
space. I can use this method to allocate

2708014Hendrix.qxp 8/7/2007 8:58 AM Page 51

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/206
http://www.htsoft.com
http://www.maxim-ic.com
http://www.circuitcellar.com

As Carl Sagan might have said, there
are millions and millions of embedded
systems in use today. If you consider how
many of them suffer errors or faults, the
percentages would be infinitesimal. Yet,
every embedded designer has experienced
a situation during which a microcomput-
er has stopped working. This can be per-
manent (fault), which requires hardware
repairs, or transient (error), which is cured
by resetting or power-cycling the system.
In this series of articles, I will describe
ways to approach embedded design
that minimize the chance of problems (a
fault or error) and allow for graceful
recoveries when faults occur.

During development, any detected
failure should be interpreted as a design
flaw. The design should then be investi-
gated and modified to alleviate the prob-
lem. Systems should be tested under all
possible circumstances, with all combi-
nations of inputs, like a normal devel-
opment process. The techniques I’ll
describe here are not intended to be used
as cures for these problems. They should
be implemented as a means of protecting
your system against the unforeseen.

What are the possible sources of the
unforeseen? Unfortunately, one of the
main culprits is the designer himself,
especially when he has not catered to a
particular set of circumstances because
of either myopia or poor specifications.
This kind of fault is usually repeatable,
or at least occurs frequently, and
requires a design fix. Power supply
noise, earth loops and earth “bounce,”
electromagnetic noise, and RF can also
be the source of system failure.

The last and least significant of the

52 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

possible sources of unforeseen error is
radiation, which is caused by either an
emission of a subatomic particle with-
in the epoxy of the IC or external
sources. The particles alter the state of
some memory or register bits, which
can cause the microcomputer’s execu-
tion path to be erroneously altered.

The degree to which you need to pro-
tect your system depends largely on the
consequences of system failure. Creat-
ing a pleasing LED display for home use
hardly needs the same degree of vigi-
lance as the antilock braking system of
a car. Consider the following ideas and
suggestions in that context. When

designing, try to consider the worst pos-
sible set of circumstances and attempt
as many tests as possible, especially in
the actual working environment.

POWER SUPPLY
The European Union’s CE certification

(EN61000 in particular) has forced all of
us to consider input protection (although
we always should have done this) to pro-
tect against damage to our equipment
and a temporary malfunction. Two of the
possible approaches to protect against
overvoltage include using a metal oxide
varistor (MOV) or a transient voltage sup-
pressor (TVS) at the input. When an MOV
is activated as a result of overvoltage, it
shorts to ground. The TVS clamps to a
fixed voltage. Either way, there is no
current limit, which can result in burnt
tracks and wires and other component
failures. When considering a power supply
to a board, the easiest solution is to put a
fuse in series with the supply line. Lower
input currents could use series resistors to
limit the current, but I will defer this dis-
cussion to the protection of inputs in gen-
eral. There are other surge-suppression
techniques like the gas discharge arrestor.
Each device has its pros and cons and
they are occasionally used together.

When using a DC supply, it is a good
idea to protect the input to your board
against reverse voltage, even though it
may only be a one-time event. This
could be as simple as a series diode (see
Figure 1a). Consider the power that this
diode will dissipate and the volt drop
that occurs. If this is a problem, the cir-
cuit in Figure 1b is a solution because
the TVS will forward bias if there is an

FEATURE ARTICLE by Aubrey Kagan

Resilience in Embedded Designs (Part 1)

In this series of articles, Aubrey describes techniques for minimizing the chances of prob-
lems occurring during the embedded design process. He also outlines the major causes of
system failure, such as power supply noise and electromagnetic interference.

24 V

->
To power regulator

24 V

->
To power regulator

24 V

->
To power regulator

Figure 1—In the first (a) and third (c) diagrams, an MOV
will short to ground if a voltage surge is seen. This prevents
the overvoltage from being applied to the rest of the elec-
tronics. In the second diagram (b), a TVS is used, which
clamps the voltage with the same result. a—A reverse cur-
rent, due to an applied reverse voltage, is prevented by the
diode. b—The reverse voltage is short circuited by the TVS
and will blow the fuse. c—A voltage of either polarity may
be used because it will be rectified by the diode bridge.

Power Supply, Inputs, and Ground

a)

b)

c)

2708019Kagan.qxp 8/7/2007 9:05 AM Page 52

http://www.circuitcellar.com

erroneous connection without the draw-
back of a series diode drop. Make sure
there is current limiting. A diode bridge
allows for a supply of either polarity, but
there is a potential drawback that I will
cover in the ground-loop discussion
later (see Figure 1c). Make sure you
have a clean supply to minimize prob-
lems in the rest of the circuitry. In
extreme cases, you can filter through a
coil at the input with capacitors to the
chassis/earth ground (see Figure 2). As
obvious as it seems, many people do not
design their power supply regulators for
worst-case conditions. First, there is the
input-voltage variation. If the input
voltage falls too low, the output voltage
can be rather unpredictable. Too high,
and the circuit can fail. This is especially
true with an AC-rectified supply.

Second, power dissipation can also be
an issue. If the heatsinking of the sup-
ply components is insufficient, inter-
mittent shutdowns can occur because
the electronics heat up and fail, then cool
and recover. Even at fairly low currents,
a linear regulator can get hot. (Refer to
the “Heat Dissipation” section in
ResilienceReferences.pdf, which is
posted on the Circuit Cellar FTP site).
Elevated temperature is not your
friend. Properties of any component are
affected by temperature. The reliability
of electronic devices can be compro-
mised by heat, especially electrolytic
capacitors, which can warm up because
they are usually close to the power
electronics. The mean time between
failure (MTBF) of an electrolytic capaci-
tor is halved for every rise of 10°C.

Avoid long traces if possible and
ensure the tracks are wide enough to
carry the maximum current. Digital cir-
cuits tend to have surge demands when
switching and each device should be

decoupled with a ceramic 0.1-μF capaci-
tor for every IC, and a 1-μF tantalum (or
similar) for every four to five ICs, all
placed as close as possible to the associ-
ated IC. Analog circuits can and will
oscillate without similar decoupling.

PROTECTION
When designing protection for circuitry,

you may need to consider protection for
one-time events. I have seen a spec that
called for protection in case the electri-
cian installing the RS-485 network cable
accidentally connected it to 120 VAC. It
also may not occur to you that pulling
cables through a conduit can create signif-
icant static electricity. It dissipates into
your circuit when first connected and is
never an issue again. (Refer to the “Stat-
ic Discharge from Wire Installation” sec-
tion in ResilienceReferences.pdf.)

When the voltage on an input is
greater or less than the supplies of the
device, a current will normally flow into
or out of the device’s input. Permanent
damage is likely to occur, unless the
resulting current is limited. As covered in
the “Power Supply” section, you need to
consider surge protection not only to
meet regulatory approval, but also to pro-
tect the product. Two of the principle
ways of doing this are by simply placing
an MOV or a TVS at the input. Many
components are said to meet the CE
requirements. Some integrated circuits
even include surge suppression to meet
the standard. It is one thing to design for
the specifications, but from my experi-
ence, reality tends to be a little harsher.
Repeated stressing of an MOV results
in the degradation of the part until it
finally fails open circuit. The TVS, on
the other hand, will fail short circuit. I
don’t know which is worse. The former
enables the unit to continue operating
unprotected until it is destroyed by a
voltage surge. The latter immediately
crashes the system, loading the power
supply or the signal source, and possibly
damaging them. Fortunately, there are
ways to protect these devices, ironic as
it may seem, to protect the protection.

When considering energy dissipa-
tion, size is everything. Don’t expect
an MOV in a 1206 package to be able
to dissipate the same amount of ener-
gy as an S09 package. Bigger is better.
You can limit the current that the

surge suppressor is passing by using a
current-limiting resistor (see Figure 3).

There are several factors to consider
when selecting the resistor. You need to
remember the power that will be dissi-
pated (again the size issue). You also need
to consider the technology of the resistor.
For high-voltage surges, most regular
resistor technologies will simply act as a
short circuit. The old-style carbon com-
position resistors are ideal for this pur-
pose, but newer technologies exist. (Refer
to the “Surge Suppression Resistors”
section in ResilienceReferences.pdf on
the Circuit Cellar FTP site.)

Other possible techniques include
using a PTC resistor instead of a regu-
lar resistor (see Figure 3). Initially, the
impedance is low, enabling normal
operation. When a surge occurs, the
device heats up as increased current
passes through it. That results in a
resistance increase and limits the cur-
rent. Of course, the resistor must be
rated for the surge voltage and the surge
suppressor. The PTC resistor must be
capable of dissipating the energy. The
PTC resistor could be replaced by a
device from Tyco Electronics’s Poly-
switch range. It effectively goes open-
circuit on overcurrent and then resets.

You could also use an NTC resistor in
series with a fuse together with the surge
suppression. The resistor limits the ini-
tial surge current. As it heats up, the
resistance drops, causing a higher current
in a positive feedback approach. As the
current gets beyond the fuse rating, the
fuse blows and protects the circuit with
the complication of having to diagnose a
fuse fault and replace it (see Figure 4).

There are several other devices (and
new ones all the time) that could be used

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 53

24 V

->
To power regulator

Figure 2—An input choke can reduce input noise and
provide overvoltage protection. This is necessary only
in the most extreme conditions or to meet regulatory
approval. In smaller projects, you can resort to simpler
techniques, such as an MOV or TVS, and perhaps a
single choke or a simple bead.

-> To signal
conditioning

and microcontroller

-> From real
world

Figure 3—When an MOV or a TVS starts to conduct, very
high currents can result. This can lead to the failure of the
device or the wiring and tracks in the circuit. One of the tech-
niques to protect the device is to use a current-limiting resistor
(as shown). However, resistor technology is also important.

2708019Kagan.qxp 8/7/2007 9:05 AM Page 53

http://www.circuitcellar.com

pull-up resistors.

GROUND LOOPS
It’s very common in industrial envi-

ronments to have different ground volt-
ages between electronic systems. The
first aspect I would like to deal with is
the classic ground potential difference
from one part of the factory floor to
another. As a result of the difference in
ground potential over even a few feet,
many designers insist on using isolation
whenever possible. But, there are some
alternative techniques. There are times
when isolation is essential, even if it is
not a safety issue, because there can be
a difference of tens of volts in the
earth potential over longer distances.

The second aspect is as a result of mis-
understanding or poor specifications. As
an example, the building automation
industry runs on 24 VAC with one side
of the transformer connected to ground.
A standard DC voltage-generation tech-
nique is to full-wave rectify this AC volt-
age. The resulting ground on the PCB is a
diode drop above system ground. Any
circuitry brought onto the board must be
aware of that fact. For instance, many
thermocouple junctions are grounded. If
the board assumes one side of the ther-
mocouple is connected to common, you
have an immediate earth loop that will
“smoke” the bridge and possibly other
components. There are a number of solu-
tions. The easiest is to work with half-
wave rectification, but you can also use
differential voltage techniques or opti-

no current limit, the device can
suffer permanent damage. You
can often use just these internal
diodes with sufficient series
resistance to limit the current.

These techniques are true for
both analog and digital inputs.
Schottky diodes, however, can
have a high leakage current that
deteriorates with temperature. The
input circuitry of some ADCs

can interact with this leakage current
to provide errors. The A/D inputs may
not be designed for high-value series
resistors because they can affect the
settling time or contribute to voltage
droop, so pay attention to the
datasheets. Forewarned is forearmed.

Overvoltage level translation can be
achieved by using comparators, opto-
couplers, magnetic coupling, and
capacitive coupling. These techniques
are also associated with electrical iso-
lation, which I will get to later.

EMI FILTER
You can also protect against RF inter-

ference by using an EMI filter on inputs
(and outputs if necessary). These normal-
ly consist of some form of inductance fol-
lowed by a capacitor to ground and/or to
earth as well. Obviously, the inductor pro-
vides high AC impedance and the capaci-
tor shorts whatever gets through to
ground. Less effective, although often suf-
ficient, is an RC low-pass filter where the
coil is replaced by a resistor. Enclosing
the PCB in a shielded metal housing can
magically resolve an unexplained effect.

INPUTS
High-voltage inputs (greater than

approximately 200 V) can actually find
a path to signal return as a result of
impurities and conductance of the
board. This results in a leakage cur-
rent and an error is measured. A guard
band (normally earthed) around the
track can cure the problem.

On an associated note, be careful to
define inputs on all CMOS circuitry.
Floating inputs can lead to some
bizarre effects, including excessive
current consumption and even cata-
strophic failure in some cases. This
also applies to microcontrollers.
Define unused I/O pins as outputs and
make sure that unused inputs have

54 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

in these forms of protection. The Analog
Devices ADG465 is like the Polyswitch
in its approach and the SP720 from Lit-
tlefuse has multiple TVSs in a single IC
package to protect several signal lines.

OVERVOLTAGE PROTECTION
Overvoltage protection is different

from surge protection because the ele-
vated voltage is normally maintained
for much longer periods and may be the
continuous condition. It is also intended
to protect the inputs against misconnec-
tions, such as inverted voltage or 120 VAC
connected to a 5-V input. Many indus-
trial systems operate at 24 VDC, while
the electronics operates at 5 VDC. In
this circumstance, we can clamp the
voltage at the input to the electronics
and limit the current by an input resis-
tor. Two such possibilities are shown in
Figure 5.

The Zener diode clamps the positive
input voltage to 4.7 and 0.7 V for a
negative input voltage. The resistor
must be sized for the correct power
dissipation. If you are catering for
surge as well as overvoltage, consider
using a carbon composition resistor here,
and remember that the clamp time of a
Zener is slower than the TVS, so the
Zener could be replaced with a TVS.

A second alternative is to use two
Schottky diodes. The diode to VCC will
clamp the positive input voltage to VCC +
0.3 V, while the diode to ground will
clamp a negative input voltage to –0.3 V.
The remarks for the resistor specifications
remain the same as in the previous
paragraph. Typical electronic specifica-
tions limit the input voltage to between
VCC + 0.6 V and VSS – 0.6 V; hence the
use of Schottky technology to ensure the
input remains within the spec. The 0.6-V
levels are because there are internal
diodes (parasitic and intentional),
which can be forward biased. If there is

-> To signal
conditioning

and microcontroller

-> From real
world

Figure 4—Protecting an MOV using an NTC resistor and fuse
will result in more severe surges blowing the fuse. Lesser
surges will be clamped without disrupting operation, which will
require a fuse replacement.

-> To signal
conditioning

and microcontroller

-> From real
world

-> To signal
conditioning

and microcontroller

-> From real
world

VCC

4V 7

Figure 5—Clamping voltage inputs can be achieved in
two ways. The tolerance of the Zener diode voltage must
be considered since a 10% part could result in a voltage
of higher than 5 V. The Zener diode protects against a
negative input voltage. Diodes or Schottky diodes can be
used to clamp the input voltage, but they may also have
drawbacks. Take care not to force too much current into
VCC because some voltage regulators cannot sink current.

2708019Kagan.qxp 8/7/2007 9:06 AM Page 54

http://www.circuitcellar.com

55.qxp 8/7/2007 9:07 AM Page 1

http://www.htsoft.com

56 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

cal/magnetic/capacitive isolation.

OPTOISOLATORS
For digital I/O, perhaps the most

common method of achieving isolation
involves using optical isolators. In addi-
tion to the isolation, however, the opto-
isolator can be used to translate voltage
levels and provide surge suppression,
even if the input and output grounds are
common. At times, optocouplers are used
to isolate AC voltages or are required to
withstand reverse applied voltages. This

can be treated with a reverse diode across
an LED of an optocoupler.

There are several issues to consider. As
an input, you need to be concerned about
surge/overvoltage damage to the LED.
When configured as a system output, the
transistor is also susceptible to surges
and short circuits. It does not have much
in the way of drive current, so it will
need buffering. I don’t think this is news
to you. However, there is a “gotcha” that
requires careful reading of the datasheet
and attention to the subsequent design.

In creating a versatile interface, I often
choose devices with high gain and then
use low output currents. Optocouplers
can suffer from an effect called “dark
current,” where there is a leakage cur-
rent that appears at the output. The cur-
rent increases with an increase in
ambient temperature and soon you
can have false inputs.

There are also analog optoisolators
such as the Clare LOC110 linear opto-
coupler. In order to improve the lineari-
ty of the device, they normally require
additional op-amps to drive them, so the
protection aspect is lost because the
input amplifiers will need protection.

OTHER ISOLATION TECHNIQUES
There are three other techniques used

in isolation. Magnetic isolation is nor-
mally used for analog isolation while
the capacitive approach, in addition to
the magnetic one, is used for digital
interfacing. The capacitive approach is
becoming more popular because it
allows for faster transmission rates.
The third approach uses relays. Some
exotic options include iCoupler (mag-
netic) isolators from Analog Devices
and high-speed isolators from NVE.

SIGNALS & VOLTAGE
It is very common in electronics for

a signal to ride on top of a constant
common-mode voltage. This voltage
can be the result of the powering of a
sensor (as in a Wheatstone bridge) or
as a result of the ground differentials.

In analog circuitry, there are two input
configurations that can be used. The first
is called a difference amplifier and the sec-
ond is an instrumentation amplifier (IA).

A difference amplifier has unequal
input impedances, but its inherent
design often allows for input voltages
outside of the supply voltage. Some
specialized products take this to an
extreme and enable you to avoid isolation.
Texas Instruments’s INA148 can handle
a common-mode voltage of 200 V.

The IA is normally a precision
device, and you can expect it to be
priced accordingly. You could make
your own from two or three op-amps,
but the noise performance would be
significantly worse than the commer-
cial product, unless you have extreme-
ly good matching of the resistors.

5th International System-on-Chip
(SoC)

Conference & Exhibit

November 7 & 8, 2007
Radisson Hotel Newport Beach, California

CPU/DSP Cores, Multicore, Embedded Memory,
Semiconductor Advances, Low-Power Issues,

Chip/System Architectures, New Design & Development
Tools, EDA-related Issues, Multimedia IPs, High-Speed

Interfaces, NoC, Challenges with Analog Design,
SoC/ASIC/ASSP Design issues, FPGA & Foundry, and

Much, Much More . . .

www.SoCconference.com

The Most Targeted & Informative
System-on-Chip (SoC)
Conference & Exhibit

Event of the Year!
Don’t Miss Out!

For Information and Questions,
Please Contact SoC Conference Organizing Committee:

SoC@savantcompany.com
949-851-1714

www.SavantCompany.com

2708019Kagan.qxp 8/7/2007 9:06 AM Page 56

http://www.SoCconference.com
mailto:SoC@savantcompany.com
http://www.SavantCompany.com
http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 57

SOURCES
ADG465 Single-channel protector
Analog Devices, Inc.
www.analog.com

LOC110 Linear optocoupler
Clare, Inc.
www.clare.com

SP720 Diode array
Littelfuse
www.littelfuse.com

INA148 Common-mode amplifier
Texas Instruments, Inc.
www.ti.com

RESOURCES
L. Chang, “Cable Discharge Event,”
AN202012, National Semiconductor
Corp., 2006.

T. Lun, “Designing for Board Level Elec-

PROJECT FILES
To download ResilienceReferences.pdf,
go to ftp://ftp.circuitcellar.com/pub/
Circuit_Cellar/2007/206.

Aubrey Kagan is a professional engineer
with a B.S.E.E. from the Technion—
Israel Institute of Technology and an
M.B.A. from the University of the Wit-
watersrand. He works at Emphatec, a
Toronto-based design house of industri-
al control interfaces and switch-mode
power supplies. In addition to writing
several articles for Circuit Cellar and
having ideas published in other periodi-
cals, Aubrey wrote Excel by Example: A
Microsoft Excel Cookbook for Electron-
ics Engineers (Newnes, 2004).

tromagnetic Compatibility,” AN2321,
Freescale Semiconductors, Inc., 2005.

B. Perrin, “I/O For Embedded Con-
trollers,” Parts 1 & 2, Circuit Cellar
Online 110 and 111, 1999.

R. Valentine, “Protection Techniques
Ensure µC Reliability in Power Con-
trol Circuits,” EDN Magazine, 1996.

T. Williamson, “Designing Microcon-
troller Systems for Electrically Noisy
Environments,”AP125, Intel Corp.,
1996.

Some electronic systems are not refer-
enced to ground and are floating. To inter-
connect between systems, you need to
establish a common reference unless you
use some form of isolation. Sometimes all
this needs is a resistor of several kilohms
between the grounds if no current is pass-
ing. At other times, you will need the iso-
lation techniques discussed above.

The RS-422/485 specification includes
a provision for common-mode voltage
differences between communication
nodes of 12 to –7 VDC. One man’s input
is another’s output, so the topic of a gen-
eral RS-485 interface serves as a good
segue into next month’s discussion
about RS-485, resilient outputs, and
watchdogs. Looking even further
ahead, I will discuss resilient software
in Part 3 of this series.

This article has touched on many
details; unfortunately, there is not
enough magazine space to discuss
them fully. Most of the material is
available on the Internet. Be sure to
read through the ResilienceRefer-
ences.pdf file on the Circuit Cellar
FTP site. It includes a list of these
documents and a few additional
comments. I

500 MHz Sampling / Timing Mode (Internal clock)

200 MHz Sampling / State Mode (External clock)

Multi-level Triggering on Edge, Pattern, Event

Count, Group Magnitude/Range, Duration etc.

Real-Time Hardware Sample Compression

Qualified (Gated) State Mode Sampling

Interpreters for I2C, SPI and RS232

Integrated 300 MHz Frequency Counter

+6V to -6V Adjustable Logic Threshold
supports virtually all logic families

Full version of software free to download

Mictor adapter available

www.pcTestInstruments.com

Connect this indispensable tool to your PC’s
USB 1.1 or 2.0 port and watch it pay for itself within hours!

Visit our website for screenshots,
specifications and to download the
easy-to-use software.

Professional Features – Professional Features – Exceptional Exceptional Price Price

34 Channels sampled at 500 MHz 34 Channels sampled at 500 MHz

Sophisticated Multi-level TriggeringSophisticated Multi-levelTriggering

Transitional Sampling / Timing and State Transitional Sampling /Timing and State

Intronix Test Instruments, Inc.
Tel: (602) 493-0674 Fax:(602) 493-2258

www.pcTestInstruments.com

2708019Kagan.qxp 8/7/2007 9:06 AM Page 57

http://www.analog.com
http://www.clare.com
http://www.littelfuse.com
http://www.ti.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/206
http://www.pcTestInstruments.com
http://www.pcTestInstruments.com
http://www.circuitcellar.com

58 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

tion and include a mechanical detent
for each step.

RANGE VERSUS RESOLUTION
One immediate problem with rotary

encoders is simultaneously handling
high resolution and wide range (see
Figure 1). This project, a pulse genera-
tor, uses an Atmel ATmega8515
microcontroller to generate a continu-
ous pulse output with a varying fre-
quency and duty cycle. One of the
ATmega8515’s timers creates the out-
put waveform. The frequency and
duty cycle of the output are controlled
by 16-bit registers, so they have a
range up to 65,535.

Two registers are used to generate
the pulse output. One controls the fre-
quency and one controls the period
that the output is low (i.e., the duty
cycle of the waveform). To get high
resolution, you want one click of the
encoder to produce one increment or
decrement of the period or frequency
registers. However, this is an impracti-
cal way to cover the full range,
because you would have to rotate the
knob 4,096 times to go from one
extreme to the other. (To avoid confu-
sion, in this article, “period” applies
to the duty cycle adjustment, not the
overall period of the waveform.)

Ideally, the encoder would have a
large step size when you want to rapidly
go from one range to the other, and a
small step size to zero in on the exact
values needed. You could have multiple
encoder wheels, one for each step rate,
but the circuit is both cheaper and more
compact if a single encoder can be used.

In the digital world, we are used to
using keypads and the increase and
decrease buttons in our designs
because they work well and are easy
to implement. But sometimes the best
user interface is just a round knob.
This is the case when you have to
adjust a value and watch it change on
a display, such as an oscilloscope, or
when a continuous feel is needed.

In some cases, you can add a simple
potentiometer to your design to either
directly control something (such as
the volume of an audio amplifier) or
read the value of a potentiometer with
an ADC and interpret it with soft-
ware. But, a potentiometer has limita-
tions: it can turn only one revolution,
in high-resolution applications it is
difficult to set exactly the same value
twice, and the resistive element tends
to wear out with continuous use.

There are a lot of cases where
adding a continuous rotary knob,
which could be read by a microproces-
sor, would enhance the design. One
way to add a rotary knob to your
design is to use an optical encoder.
This is a potentiometer with a shaft
for the attachment of a knob and pro-
ducing a digital output when rotated.
Most encoders do not have mechanical
stops and can be rotated continuously.

Optical encoders were expensive in
the past; however, the price has come
down, especially those made for con-
sumer electronics, such as Grayhill
series 62P encoders. They are available
for less than $10 through distributors
such as DigiKey. The 62P series
encoders produce 16 steps per revolu-

The 62P series encoders are avail-
able with an integrated push button.
Rotating the knob produces a digital
output waveform. Pushing the knob
closes a momentary switch. My exam-
ple uses the switch to select the range.
Pushing the knob once changes the
Encoder mode so one rotation step
(one detent) increases or decreases the
timer values by 10. Pushing the knob
a second time increases the value to
100. Pushing the knob again increases
it to 1,000, and the fourth push
returns it to a step size of one.

Using the switch in this way enables
you to vary the frequency/period over
the entire available range with just five
full rotations of the knob in 1,000-step
mode. However, you can select a single
step of 68 ns in 1-step mode. The circuit
includes LEDs to indicate the 10-, 100-,
and 1,000-step modes so you know what
to expect when the knob is turned.

With this circuit, it is possible to
adjust the period register to a value
greater than the frequency register,
which would produce no output. In
that case, the software forces the peri-
od register to equal the frequency reg-
ister minus three so the output does
not disappear completely. The calcula-
tion is made each time an encoder
change is detected.

The circuit includes push button
switches to select between frequency
and period, and LEDs to indicate each.
In Frequency mode, rotating the knob
adjusts the frequency. In Period mode,
the knob adjusts the period of the low
portion of the waveform. The encoder
knob has several modes of operation

FEATURE ARTICLE by Stuart Ball

Pulse Generation

Try a continuous rotary knob in your next design instead of keypads or buttons. With an optical
encoder and an ATmega8515 microcontroller, a digital output is produced in Stuart’s system.

Encoder Interfacing to Microcontrollers

2709015Ball.qxp 8/7/2007 9:10 AM Page 58

http://www.circuitcellar.com

because it has the ×1, ×10, ×100, and
×1,000 step sizes in both Frequency
and Period modes.

The circuit also has a switch (and an
associated indicator LED) to select a
50% duty cycle. In this mode, the
period is fixed at 50% of the frequency
and the knob can only be used to
adjust the frequency. The ×10, ×100,
and ×1,000 modes are still available,
but they apply only to frequency
adjustment. The Frequency/Period
switch does not change the encoder
functionality in this mode. The new
period value is calculated each time an
encoder change is detected.

OTHER IMPLEMENTATIONS
An encoder without an integral

switch could be used in the circuit by
using an additional push button
switch to change modes of operation.
Another enhancement could include
remembering the step size of the Fre-
quency and Period modes. This way, if
the frequency was adjusted using ×10
steps and the period was adjusted
using ×1 steps, switching back and

forth between Period and Frequency
modes would also switch the step size
to the last value used for the respec-
tive mode. That feature is not includ-
ed in the software, but it is certainly
possible to add.

Another way to implement the
range resolution is to have a “shift”
key for each step size. The keys would
be held down while rotating the
encoder knob to adjust the value. The
advantage of this is very fast switching
back to ×1 mode. The disadvantages are
the need for extra switches and the
need for two-handed operation.

Another enhancement that could be
added is to have the period (duty cycle)
adjustment be proportional to the fre-
quency. So, the ×10, ×100, and ×1,000
settings would be a percentage (say, 1%,
5%, and 10%) of the frequency register
value in Period Adjustment mode. The
larger rate settings (particularly the
×1,000 setting) would allow for finer
adjustment at higher frequency values.

USER CONSIDERATIONS
In many cases you have some fac-

tors to consider when using a continu-
ous adjustment of this type. One
example is the period/frequency
adjustment of the example circuit.
What do you do when the user tries to
adjust the period to a greater value
than the frequency register contains?
In the case of the waveform generator,
the software limits the period to
ensure a valid output, even if it isn’t
exactly what the user expected. There
are other examples. Do you let the user
spin past the end of the range and wrap
around to the beginning, or do you stop
advancing the values when the end of
the range is reached? Do you need to
limit voltage, current, motor speed, or
other parameters to a safe value?

Avoiding user confusion is also a
factor. Say you limit the user to the
end of the range so it can’t wrap
around by continuing to spin the knob.
The current frequency register value is
65,000, and the user turns the knob
clockwise while in ×1,000 mode. The
next step would be 66,000, which would
wrap around to 464 in a 16-bit register.
However, since a wraparound is not

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 59

Figure 1—The pulse generator circuit is based on an Atmel ATmega8515 microcontroller.

2709015Ball.qxp 8/7/2007 9:10 AM Page 59

http://www.circuitcellar.com

quency mode, 50% mode, and the
encoder step size. The Port A pins could
also be connected to a standard (14-pin)
character LCD, such as those produced
by Lumex. Of course, the software
must then be adapted to use an LCD.

The circuit uses a standard 2.1 ×
5.5 mm power jack to accept power from
a 9-VDC wall-mount supply. J1 is the ISP
connector for downloading code to the
microcontroller. LED D1 blinks about
once per second to indicate that the
microcontroller is operating correctly.

The circuit uses a 14.7450-MHz
crystal so the serial port will operate
at standard data rates. However, since
the serial port is not used in this
design, almost any frequency will
work. The output frequency and peri-
od step sizes, however, are tied to the
crystal frequency. S1 to S3 are standard
push button switches. S1 is a spare
switch that is not used in this design.

THE SOFTWARE
Software for the project is written in

WinAVR, which uses the GNU GCC
open-source C compiler to target
Atmel microcontrollers. The source is
broken into two modules, the main
program (pulsegen.c) and the encoder
processing code (encoderprocess.c). No
interrupts are used in the code.

The main program initializes the
timers and variables, sets up the I/O
ports, and then starts a continuous
loop. The loop checks for overflow of
the 8-bit T0 timer, which occurs about
every 18 ms. The timebase is used to
blink the heartbeat LED and debounce

encoder. The ATmega8515 is an 8-bit,
flash memory-based microcontroller
with in-circuit programming capability.
The important features for this purpose
are the internal 16-bit timers.

Timer1 of the ATmega8515 has a
PWM mode of operation with two 16-bit
registers. One register, OCR1A, sets
the number of clocks before the timer
restarts and counting starts over (the
number of clocks that constitute a full
cycle of output). The other register,
OCR1B, sets the number of clocks
that the OCR1B output remains low at
the beginning of the output cycle. By
adjusting the OCR1A value, the fre-
quency of the output waveform can be
controlled, and the duty cycle can be
controlled by adjusting the OCR1B reg-
ister. The software reads the encoder
knob and other switches to determine
how to adjust the two registers.

The 62P22-L6 encoder is designed for
PCB mounting and has a 0.1875″ diam-
eter shaft. As mentioned earlier, the
encoder produces 16 pulses per revolu-
tion and includes a push button switch.
The encoder uses optical components
to detect shaft rotation, so the output
is glitch free, eliminating the need for
debouncing circuitry or software. The
encoder requires an external, current-
limiting resistor (R1 in Figure 1) to sup-
ply current to the internal optical emit-
ters. The optical transistors, which pro-
duce the Phase A and Phase B outputs,
require external pull-ups.

The encoder produces a quadrature
output. This means that two signal
lines are used to determine when the
shaft has been turned and in which
direction. In the forward direction,
phase A goes high first, then phase B
goes high, then phase A goes low, and
then Phase B goes low. In the reverse
direction, B leads A (goes high first fol-
lowed by phase A). By comparing the
last state of phase A and B to the new
state of the new signals, the software
can determine which way the user
turned the knob. Since only one phase
changes at a time, there is no problem
with ambiguity when reading the
phase signals. Table 1 shows how the
bits change for quadrature encoding
and how the changes are interpreted.

The circuit uses LEDs to indicate
when the encoder is in Period or Fre-

60 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

allowed, the software limits the value to
65,535. The user then turns the knob
back one detent. The new value is
64,535 not 64,000. Does this confuse the
user? In the case of the waveform gener-
ator, probably not. In other cases, it may.

In a timing-based circuit, can you
turn the knob faster than the waveform
can be adjusted? If you can, strange out-
puts can result. Another potential draw-
back is the chance of making a register
adjustment while the timer is wrapping
around. In the example circuit, the only
impact of this is a possible delay while
the timer counts up to the new value
again. In some other applications, this
must be prevented by synchronizing
timer updates with timer rollovers.

OTHER APPLICATIONS
This article has focused on using an

encoder to implement a pulse genera-
tor because it is a simple example that
illustrates the concepts. Other applica-
tions for a variable-range selection or
step size are: one knob to select both
the band and frequency in a radio or
other RF device, normal and fine tun-
ing for a radio or transmitter, a single
knob to select an input or output sig-
nal source and to set the level, sweep-
ing quickly across a displayed wave-
form and then zeroing in on a particu-
lar area, and selecting a file or data
block from a list and then zooming in
to view a particular location.

THE CIRCUIT
Although the circuit used here is

intended to illustrate the encoder range
and resolution concepts rather than be
used as a construction project, it may
be useful for you to understand the cir-
cuit itself. The circuit is based on the
ATmega8515 and a Grayhill 62P22-L6

Channel B Channel A Direction
Rising 1 Forward

Falling 0 Forward

0 Rising Forward

1 Falling Forward

Rising 0 Reverse

Falling 1 Reverse

1 Rising Reverse

0 Falling Reverse

Table 1—An example of quadrature encoding using two
lines to indicate rotation and direction.

Forward motion (returns 1)
Chan B, A Changes to
0, 1 1, 1

1, 0 0, 0

0, 0 0, 1

1, 1 1, 0

Reverse motion (returns 2)
Chan B, A Changes to
0, 0 1, 0

1, 1 0, 1

1, 0 1, 1

0, 1 0, 0

Table 2—The software looks for specific state changes
to detect motion. Note that there are 16 possible values
for old and new states, but only eight are valid. The
remaining eight indicate no change to the encoder state
or are illegal transitions.

2709015Ball.qxp 8/7/2007 9:10 AM Page 60

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 61

Stuart Ball, P.E., is an electrical engi-
neer with 20 years of experience. He
is the author of three books about
embedded systems, all published by
Elsevier/Newnes. Stuart is an engi-
neering manager at Seagate Technolo-
gies, LLC, in Longmont, CO.

switch closures. The main loop also
checks for switch closures and
encoder changes and it updates the
LED status based on the current state.

Encoder processing consists of com-
paring the stored bits from the last
encoder sample to the new encoder sam-
ple. If the encoder has changed states, a
positive value is returned to the main
loop for processing. A value of 1
means the encoder was turned clock-
wise. A value of 2 means the encoder
was turned counterclockwise. A value
of 0 is returned if the encoder quadra-
ture bits did not change or if the
change was an unrecognized value.

The encoder comparison is performed
by creating a byte that consists of
0000xxyy, where xx is the previous
encoder value and yy is the new value.
This is used to index into an array
that determines what value is
returned. Table 2 shows the valid
encoder state changes.

The transitions in Table 2 translate
into a 16-value array in the software.
Array values are the values returned
from the encoder processing code based
on the old/new phase bit values (see
Table 3). The array values of zero are
places where there is no change (bits 2
and 3 = bits 0 and 1) or where the transi-
tion is illegal, indicating a missed step.

If a positive value is returned from
the encoder comparison, the main
code will increment or decrement the
frequency or period values based on
the state of the frequency/period indi-
cator and the value of the 50% indica-
tor. The period cannot be adjusted
when in 50% mode, because it is
forced to be half of the frequency.

The increment and decrement rou-
tines are passed the step size (1, 10,
100, or 1,000) and will increase or
decrease the appropriate register by the
step size. If the calculated values result
in the period value being larger than
the frequency value, the period is forced
to be just less than the frequency to
ensure that an output is still produced.

This is purely a decision
for operator convenience.
There is no reason why
the output can’t be
allowed to turn off if you
set a frequency value that
is too small or a period

value that is too large.
Although the push button switches

are debounced using the 18-Hz T0
rollover, the encoder quadrature sig-
nals are not debounced and are sam-
pled every pass through the main loop.
This provides a sufficiently high sam-
pling rate to ensure no encoder transi-
tions are missed. As I mentioned earli-
er, debouncing is not needed for the
quadrature signals because the
encoder’s optical circuitry produces
glitch-free outputs.

Adding a rotary control knob using
a quadrature encoder is straightfor-
ward, and there are ways to handle
the resolution/range trade-off. With
the decreasing cost of encoders
intended for consumer electronics
applications, you can use these
encoders in any places where they
will make life easier for the user. I

RESOURCE
Grayhill, Inc., “Optical Encoders:
Series 62P: Low Cost, PC Mount,”
970, 2003, http://lgrws01.grayhill.com
/web/pdf/Bltn970.pdf.

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2007/206.

Offset (hex) 0 1 2 3 4 5 6 7 8 9 A B C D E F
Value 0 1 2 0 2 0 0 1 1 0 0 2 0 2 1 0

Table 3—This lookup table is used to detect motion by comparing old/new
encoder values. A value of 0 means no change, 1 means forward motion,
and 2 means reverse motion.

SOURCES
ATmega8515 Microcontroller
Atmel Corp.
www.atmel.com

62P22-L6 Encoder
Grayhill, Inc.
www.grayhill.com

2709015Ball.qxp 8/7/2007 9:10 AM Page 61

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/206
http://lgrws01.grayhill.com/web/pdf/Bltn970.pdf
http://www.atmel.com
http://www.grayhill.com
http://www.circuitcellar.com
http://www.xgamestation.com
http://www.labjack.com
http://www.lvr.com

62 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

The tricky thing is deciding what
must be configurable, and how. You
have to foresee how the customer will
be using the apparatus. Imagine, for
example, a climate control system:
heating, cooling, and ventilation.
Some users may want to have differ-
ent settings in various rooms. Others
may want to enter an elaborate sched-
ule in order to reduce energy waste.
Others may want PIN code security or
the ability to keep a log of the average
temperature over certain periods of
time. A hotel may want to connect a
climate control system to its booking
system because there is no point in
heating or cooling a vacant room. A
laboratory may want to connect it to a
security system. Whatever you think
of, someone will come up with a sce-
nario that your hardware can handle
but your firmware can’t support.

When a configuration system grows
out of its proportions, it is time to
look for an alternative—a scripting
system, and ideally a scripting system
that does not require more memory or
CPU cycles than you can spare. A

In this article, I will present Pawn,
which is a scripting language that tar-
gets embedded systems. I will also
describe an implementation of the
Pawn virtual machine on an NXP
Semiconductors LPC2106 microcon-
troller.

Pawn is open-source software, but it
has a zlib/libpng license that explicitly
allows for commercial use. Refer to
Figure 1 for an overview of the “con-
ceptual blocks” that I will discuss.

SCRIPTING LANGUAGE
When I started as an engineer, many

electronic devices were hardwired,
using cascades of logic ICs or even
analog chips. But the move to CPU-
controlled devices was beginning. The
press wrote that these microcon-
trollers were going to make our
machines “intelligent,” but the real
drive behind this move was, of course,
the reduction of cost, increased func-
tionality, and further miniaturiza-
tion—all at the same time.

The increased functionality of con-
temporary devices almost always leads
to the desire or necessity to
configure the device. Many
networked devices present
a web browser interface for
basic configuration. Older
devices have well-known
user interfaces with a hand-
ful of tiny push buttons
that have double or triple
functions. (Daylight sav-
ings time has just ended as
I write this. I have lost
count of how many ways
there are to set a clock.)

scripting system can do everything
that static configurations can do, but
it adds dynamics. A script is an exten-
sion of your firmware, and it may
change how the device behaves or
interfaces with other devices. Obvi-
ously, you could change the firmware
instead, but you’d do so at the risk of
arriving at a multitude of customer-
specific versions of the firmware, all
of which have to be maintained. Trust
me, I have been there. With scripts
running in a “sandbox,” there is a sep-
aration between the host application
(the firmware) and the customized
module. You may enable the customer
to “script” your device without risk-
ing breaking the essential functionali-
ty of the device.

There are many scripting languages,
so you may wonder why another lan-
guage is needed. The answer is that
the design for a quick and light virtual
machine prompted me to make
changes to the programming language
that I used as a model. Pawn started
as a subset of C, and it still has rough-
ly the same operator set and instruc-

tion set as C. The virtual
machine requires little
from its host (the firmware
or application that embeds
the virtual machine). It
does not use dynamic
memory or a file/console
I/O interface, and it does
not need to run in a sepa-
rate thread. For example,
the virtual machine runs
well on a Texas Instru-
ments MSP430F1611
microcontroller, with 48 KB

FEATURE ARTICLE by Thiadmer Riemersma

Embedded Scripting
With the Pawn scripting language, less is more. As Thiadmer explains, the language requires
so little from its embedded host system that it can be added to an NXP LPC2106 microcon-
troller with few resources. Now you can extend your firmware without changing it.

Implicit
include file

User’s
script

User’s
include
 file(s)

Compiler
P-code
(*.amx)

Host application
(firmware)

Call public
functions

P-code
copy

Abstract
machine

Debug
hook

Native
functions

Figure 1—This is an overview of the scripting system. The Pawn compiler runs on a
PC or workstation and builds the P-code file from a set of source files. The P-code file
must then be moved into the firmware, possibly via a debugger hook, for the abstract
machine to execute it.

2708018Riemersma.qxp 8/7/2007 9:12 AM Page 62

http://www.circuitcellar.com

of ROM and 10 KB of RAM, alongside
the main firmware of the appliance (a
security device in this case) and the
µC/OS-II multitasking kernel. There
are not many scripting languages that
run in such an environment. I made it
easier on myself. I used an NXP
LPC2106, which is a Keil ARM7TDMI
microcontroller with 128 KB of ROM
and 64 KB of RAM (plenty of memory).

VIRTUAL MACHINE
Since the more interesting part of the

Pawn scripting system is the virtual
machine, I will start there. Pawn is a
bytecode-compiled language, and the vir-
tual machine is a bytecode interpreter.
Incidentally, the Pawn manual uses the
term P-code or pseudocode instead of
bytecode, but that is merely because I
am from the old school. The two mean
the same thing. For reasons of align-
ment, each opcode takes the size of the
basic data unit, a “cell.” Typically, Pawn
is configured to be a 32-bit language
(even when running on an 8-bit con-
troller), and a cell is 4 bytes. The virtual
machine is in portable C source and, to a
large extent, in a single-source file. With
that said, there are many configuration
options to tweak the virtual machine to
your requirements or preferences.

Adding the virtual machine to your
project requires a few steps. First,
include the source code for the Pawn
virtual machine in your other source
files. This one is easy because the vir-
tual machine should compile out of the
box. The second step is to call (from

your firmware) the functions to
initialize and “run” the virtual
machine. This should not be too hard
either. The third step is to add “native”
functions to your firmware. Native
functions are the interface between the
script and your firmware. Without
native functions, a script cannot reach
out of its sandbox. It can burn a few
CPU cycles, if you have them in
excess, but that is about it. Although
you may be able to use one or more of
the native function libraries written by
me and others, you will likely need to
write a handful of native functions that
are specific to your device or firmware.
One last thing: you also need to find a
way to transfer the bytecode of the
script to the device (e.g., via a serial line
or using a memory card of some kind).
If you are using a serial line, one
option is to implement a debugger hook
in your firmware. The Pawn source-level
debugger has commands to transfer files.
It also has the common breakpoint, data
inspection, and stepwise execution
commands, of course.

The snippet of code in Listing 1
shows the essential code for running a
compiled script. The listing assumes
that an array called bytecode is
declared elsewhere and that it is filled
with the compiled script. Further-
more, the array must be large enough
to contain the data and the stack for
the script. I will omit how to fill this
array for the moment. This snippet
declares a variable with the type AMX
and initializes it by first clearing it and

then calling amx_Init. While the vir-
tual machine exists, this variable con-
tains the complete state of all pseudo-
registers of the virtual machine. If you
want to have two virtual machines
running two scripts, you essentially
need only create and initialize a second
AMX variable. The requirement to clear
the AMX structure before initializing it is
a bit of a leftover from the past, but it
still has a purpose in enabling you to
split the code from the data/stack.
“AMX” stands for abstract machine
executor. “Abstract machine” was the
name for virtual machines in the era
that bytecode was still called P-code.

After initializing the virtual machine,
register the native functions to it. You
can do this in a single step or in multi-
ple steps. In Listing 1, there is only one
table with native functions. I will
return to how to implement native
functions later. For a quick peek, refer
to Listing 2. Initializing a script and reg-
istering native functions are one-time
steps. When you run a script multiple
times, there is no need to repeat these.

Finally, amx_Exec runs the script and
does not return until it completes. In
Listing 1, the script starts at the “main”
entry point. Like in C language, this is a
function called main in the script. A
script may have alternative entry
points. In that case you can select the
entry point to call. The primary use of
multiple entry points in a script is in an
event-driven setup, where each kind of
event “fires” a particular function in the
script. In Pawn, these entry points are
called “public” functions. In a sense,
public functions are the opposite of
native functions. The host application
calls into the script through a public
function and a script calls back into the
firmware through a native function.

The Pawn virtual machine is very
configurable. On many systems, it
will compile with the default configu-
ration, mostly because the virtual
machine is quite self-contained. It
requires only a few string routines
from the standard library. On smaller
systems, you may need to add a few
macro definitions on the compiler
command line. Table 1 lists the
options I used for this LPC2106-based
project. Other configuration macros
are listed in the Pawn documentation.

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 63

Listing 1—These are the steps needed to initialize and run a script: initialize the virtual machine, register
native functions, and call the exec function. The error handling makes it look more complex than it really is.

extern const AMX_NATIVE_INFO my_Natives[];
extern unsigned long bytecodes[];

AMX amx;
cell ret;
int err;

memset(&amx, 0, sizeof amx);
err = amx_Init(&amx, bytecodes);
if (err == AMX_ERR_NONE) {

err = amx_Register(&amx, my_Natives, -1);
if (err == AMX_ERR_NONE) {

err = amx_Exec(&amx, &ret, AMX_EXEC_MAIN);
if (err == AMX_ERR_NONE)

HandleReturnCode(ret);
}

}
if (err != AMX_ERR_NONE)

HandleError(err);

2708018Riemersma.qxp 8/7/2007 9:12 AM Page 63

http://www.circuitcellar.com

I used a development board that I saw
in Elektor Electronics.[1] The board has
the first 16 I/O pins connected to a row
of LEDs. By toggling the I/O pins on and
off, the Pawn script in Listing 3 creates
a “walking light.” I cheated. The script
uses a native function (delay) that is
not in Listing 2. This is just a simple
function that waits the number of mil-
liseconds passed in a parameter. The
native function declarations at the top of
Listing 3 would normally be in an
include file. At first sight, this code may
not look much like C because semi-
colons are optional (in most cases).
Parentheses around the function argu-
ments are optional in a few situations
as well. It is perfectly well allowed to
add these optional elements and make
the code look more like C (see Listing 4).

Fine, but how do you get the script
into the microcontroller’s memory so
that it can execute it? Well, you must
find that out yourself because it
depends on which interfaces you have
in your device. If your device uses a
CompactFlash or an SD/MMC card,
you can store the compiled script on

It has more to do with the particular
development board that I used for test-
ing the code in this article than with a
particular limitation of the microcon-
troller or the Pawn system.

All native functions have the same
definition. The first argument is a
pointer to the virtual machine state
and the second parameter holds all
arguments that the script passed to
the native function. The params func-
tion argument is a pointer directly
into the stack of the abstract machine.
The native function can access the
fields directly, without needing to
copy/extract arguments out of the vir-
tual machine. The first element in the
params array is the number of bytes
passed to the native function. Functions
that accept a variable argument list can
use this to find out how many arguments
were passed. The my_Natives table is at
the end of Listing 2. It was also referred
to in Listing 1. For convenience, this
table ends with a “null” entry, so you
can instruct amx_Register to count
the number of elements in the table,
instead of doing it yourself.

64 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

At a high level, this completes the
embedding of the Pawn virtual machine
in your own code, with the exception of
a few holes that I have jumped over and
need to fill in. The functions to handle
errors and to handle any return value
from the script must also be written by
you. Fortunately, if you have configured
the Pawn compiler well, most problems
will be flagged by the compiler, so you
can simplify the error reporting on the
device. For example, amx_Register
fails if the script contains references to
native functions that the firmware does
not provide. Since the Pawn compiler
requires the declaration of all native
functions, this can only happen if the
user has a Pawn compiler setup that
does not match the target firmware.

NATIVE FUNCTIONS
On to native functions. Listing 2 gives

implementations for three simple, native
functions. These functions allow you to
toggle some of the general-purpose I/O
lines and to configure these as inputs or
outputs. It is an arbitrary choice to limit
the range of I/O pins between 0 and 15.

2708018Riemersma.qxp 8/7/2007 9:12 AM Page 64

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.gridconnect.com

65.qxp 12/4/2006 11:56 AM Page 1

http://www.usbee.com

The premier conference and exhibition for PCB

engineering, design and manufacture professionals

Conference: October 21-26, 2007

Exhibition: October 23-24, 2007

Durham Marriott at the Civic Center
 Durham, NC

Association Sponsor:

Media Sponsors:

Register online now for your FREE Exhibits

Pass with Priority Code E07CC097

You’ll enjoy free admission to the:

Two-day exhibition

Tabletop Showcase

Keynote Address

13 FREE technical sessions

Wine and Cheese Mixer

Backyard BBQ and Game Night

•

•

•

•

•

•

View the conference

program online at

www.pcbeast.com

Visit www.pcbeast.com for details.

66.qxp 8/7/2007 9:13 AM Page 1

http://www.pcbeast.com
http://www.pcbeast.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 67

that card and load it. Alternatively, if
you have a suitable area of nonvolatile
memory, you can transfer the compiled
script to that area. For the transfer, you
can use the Pawn debugger at one end,
so that you have to implement only the
receiver in the firmware. I posted a suit-
able “receiver end” that stores the
transferred script in one of the 16 sec-
tors of flash ROM on the LPC2106 on
the Circuit Cellar FTP site. For a first
quick test, however, I usually transform
the output of the Pawn compiler to a C
array with the “xd” utility. Then, I
include the C array into the source

code and adjust Listing 1 to copy the
array into the bytecodes array before
calling amx_Init.

Before storing the script in a loca-
tion where the microcontroller can
reach it, you should compile the Pawn
source to bytecode. The Pawn compil-
er has some defaults that may not be
suitable for small systems. For
instance, it reserves a 16-KB stack. To
adjust the stack size, you can use the
option -S on the command line of the
Pawn compiler. Better yet, you can
store it in a file called pawn.cfg, which
you put in the same directory where

the compiler resides. The compiler
will use this as the default. If you also
store the declarations of all native and
public functions and constants in the
default.inc file, you will not have to
explicitly include any “header” files in
your scripts because the Pawn compil-
er processes default.inc before parsing
your script.

PAWN SPECIFICS
I have put the cart before the horse

by jumping at the embedding of the vir-
tual machine in firmware before telling
you exactly what the Pawn language
brings to your firmware. Pawn is a
derivative of C, but it is reduced and sim-
plified at a few points. The biggest devia-
tion from C is that Pawn lacks a typing
mechanism. All variables are 32-bit
integer values in Pawn. The rationale
behind it is that a Pawn script would
mostly manipulate “objects” in the
firmware, and it would do that
through native functions. Compare it
to dealing with files in C. The file is a
resource in the operating system, and
your C program manipulates it through
library functions like fopen, fread,
and so on. The C program identifies an
open file with a file pointer, an opaque
handle. Pawn scripts should also identi-
fy resources of the device or of the
firmware via opaque handles. To get
some static checking, Pawn has a “tag-
ging” mechanism, which you might
see as a typing system where all types
are restricted to fit into 32 bits.

The single-base type is called a “cell”
in Pawn. I described it as a 32-bit inte-
ger because most implementations use
a 32-bit cell. By redefining operators,
you can store fixed-point or floating-
point values in Pawn. User-defined
operators are similar to overloaded
operators in a language like C++. This
design allows for some flexibility. On
platforms lacking floating-point sup-
port, you can still use fractional values
in Pawn by adding a fixed-point module.
It comes at a cost, however, because
user-defined operators have the over-
head of a function call.

You will often want to associate a
script, or part of a script, with an event
(e.g., an alarm that goes off, a level
that was reached, or a switch that was
toggled). In other words, scripts tend to

Listing 2—Implementing native functions is fairly straightforward. Native functions have a standard definition
and they access parameters directly in the stack of the virtual machine. Only when handling arrays or values
passed by reference do you have to translate addresses between “physical” and “virtual.”

#define MAX_IOPIN 16

cell AMX_NATIVE_CALL n_configpin(AMX *amx, const cell *params)
{

int mask = (1 << params[1]);
if (params[1] >= 0 && params[1] < MAX_IOPIN) {

switch (params[2]) {
case 0: /* input */

GPIO_IODIR &= ~mask;
return 1;

case 1: /* output */
GPIO_IODIR |= mask;
return 1;

}
}
return 0;

}

cell AMX_NATIVE_CALL n_setpin(AMX *amx, const cell *params)
{

int mask = (1 << params[1]);
if (params[1] >= 0 && params[1] < MAX_IOPIN) {

switch (params[2]) {
case 0:

GPIO_IOCLR = mask;
return 1;

case 1:
GPIO_IOSET = mask;
return 1;

}
}
return 0;

}

cell AMX_NATIVE_CALL n_getpin(AMX *amx, const cell *params)
{

int mask = (1 << params[1]);
if (params[1] >= 0 && params[1] < MAX_IOPIN)

return (GPIO_IOPIN & mask) != 0;
return 0;

}

const AMX_NATIVE_INFO my_Natives[] = {
{ “configpin”, n_configpin },
{ “setpin”, n_setpin },
{ “getpin”, n_getpin },
{ NULL, NULL }

};

2708018Riemersma.qxp 8/7/2007 9:12 AM Page 67

http://www.circuitcellar.com

default values. (This is not restricted to
the last arguments in the argument
list.) In the function call, you can indi-
cate the arguments by position or by
name. Using named arguments is con-
venient for functions with many argu-
ments, especially if you leave most
arguments at their default values.

The weak points of Pawn are strings
and the typing system, or the lack of a
typing system. Pawn knows cells and
arrays of cells. It does not have struc-
tures or classes. The conceptual idea of
Pawn is that the host application builds
and maintains objects or resources on
behalf of the script and passes the script
an opaque handle. In addition, array
operations are more flexible in Pawn
than in C, so in some contexts, you
may simulate light-weight structures
with arrays. That aside, the lack of
support for structured data is probably
the weakest point of Pawn.

Support for strings in Pawn is equally
primitive, as in C. Strings are zero-ter-
minated arrays with a fixed maximum
length. If you have to do a lot of string
processing in your device, you may
want to make a dynamic string library
in the firmware and let the Pawn scripts
access these via native functions. This

be event-driven. With multiple entry
points in the form of public functions,
Pawn enables you to run a different part
of the script for each kind of event. The
advantage of doing it this way, rather
than running a different script for every
event, is that you can share variables
and states between the events.

The word “states” did not drop by
accident. Pawn supports finite state
machines (“automata”) in the language.
It is my experience that many event-
driven programs end up with a few
states. You can, of course, implement
states in an ad hoc way with a variable
and a few switch statements, but with
language support, the compiler checks
the automaton model. Pawn extends
the standard state machines by intro-
ducing state-local variables—variables
that have the scope (and life) of a set of
states. When data must be shared
across states, state-local variables can
replace global variables.

I posted a somewhat expanded ver-
sion of Listings 1 to 3, plus some
“driver” code for a few internal
peripherals, such as the real-time
clock and the RS-232, on Circuit Cel-
lar’s FTP site. A debugger hook, which
uses the in-application programming
(IAP) interface of the LPC2106 to store
the script in a flash memory ROM
sector, is also posted on the site. I
compiled the source code with GNU
GCC. When using a different compil-
er, you may need to make minor
adjustments to the IAP module. The
other modules should compile with-
out problems. The GNU GCC team
apparently feels that the relative
precedence levels of the logical “and”
and logical “or” operators are ambigu-

ous or ill-understood by programmers.
When compiling amx.c with all warn-
ings enabled, GCC issues a list of
warnings where it suggests to add
parentheses around sub-expressions.
You can make these go away with the
GCC command-line option –Wno-
parentheses.

PAWN IN REVIEW
Pawn’s strong point is in the inter-

face with the host application. There is
little overhead in calling a native func-
tion, so this interface is fast. Argu-
ments can be passed by value or by
reference, and all arguments may have

68 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

Listing 3—A simple script that makes a running light at the 16 LEDs connected to the first 16 I/O pins of the
Elektor ARMee development board.

enum {
Input,
Output,
}

native bool: configpin(pin, type)
native bool: setpin(pin, value)
native getpin(pin)
native delay(ms)

main()
{
const first_pin = 0
const last_pin = 15
new pin

for (pin = first_pin; pin <= last_pin; pin++)
configpin pin, Output

pin = first_pin
for (;;)

{
setpin pin, 1
delay 100
setpin pin, 0
if (++pin > last_pin)

pin = first_pin
}

}

Command Description
AMX_NODYNALOAD When compiling the Pawn virtual machine for Microsoft Windows or Linux, the

virtual machine can load libraries with native functions as DLLs or shared
libraries. (This is not applicable to most embedded systems.) If your firmware
runs on embedded Linux or Windows CE, you may need to add this macro to
disable dynamic loading.

AMX_ANSIONLY Pawn has support for “wide characters” by default, but it requires a few wide
character string functions from the run-time library to support this. If you only
intend to use 8-bit characters, you can remove this dependency.

AMX_NO_NATIVEINFO This definition removes the function amx_NativeInfo via conditional com-
pilation. This function is rarely needed, and it is the only function with static data.
After removing the function, the virtual machine is fully reentrant.

Table 1—Here are a handful of useful options for building the virtual machine. The Pawn documentation lists
several more.

2708018Riemersma.qxp 8/7/2007 9:12 AM Page 68

http://www.circuitcellar.com

handling errors. The nature of embed-
ded systems is very diverse, which is
why I usually recommend to first get
Pawn running on a standard PC or
workstation. Then, move it to the
embedded world after familiarizing
yourself with it. The implementer’s
guide gives explicit building examples
for Microsoft Windows and Linux
using a variety of compilers.

Although I mentioned that there are
a lot of “little languages” like Pawn
already, I have not referred to any of
them. I will make an exception for
BCPL, created by Martin Richards in
1966, because Pawn owes a lot to it.[3]

First, BCPL indirectly inspired C.
Pawn takes its general syntax, its
operator set, and most of its instruc-
tions from C. Second, BCPL imple-
mented some concepts in 1966 that
we now view as “modern,” such as
optional semicolons at the end of an
instruction. Pawn’s semantic rules for
optional semicolons are identical to
those in BCPL. The expression syntax
like “5 <= a <= 10”—which gives the
logical result of variable “a” being
between 5 and 10—is copied from
BCPL too. Oh, and the idea to make a
compiler produce object code for a vir-
tual machine so only the virtual
machine needs to be ported to a new
hardware platform is ubiquitous today,
but BCPL is reportedly the first sys-
tem to take this approach. BCPL is an
interesting language and system, and
it is still very much alive. Thank you,
Mr. Richards. I

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 69

is roughly the same as the approach
used by the std::string class in C++.
For applications and devices with an
international audience, a bonus is that
Pawn knows both “packed” strings with
1 byte per character and “unpacked”
strings where a character takes a 32-bit
cell. Therefore, an unpacked string can
store Unicode characters or an even
larger character set in UCS-4 encoding.
(Unicode has a limit of approximately
50,000 characters for all languages in
the world, which some feel is too
small.)[2] In many functions, you can use
these interchangeably, without needing
to first transform one kind of string into
the other kind. The Pawn compiler
accepts source code in UTF-8 encod-
ing, and you can use Unicode charac-
ters in string literals.

GET STARTED
This article only scratches the sur-

face of many of the aspects involved
in adding Pawn to a system. I have
barely discussed the language, and
there is more to calling public func-
tions and making native functions.
The documentation for Pawn is large-
ly split into two guides. The “language
guide” is what the script writer needs.
It contains a tutorial and the defini-
tion of the Pawn language, as well as
appendices covering the compiler
command-line syntax and explana-
tions for error messages. You need the
“implementer’s guide” for guidance
about making native functions, pass-
ing arguments to public functions, and

SOURCES
Pawn toolkit
ITB CompuPhase
www.compuphase.com

ARM7TDMI RISC Processor
Keil
www.keil.com

LPC2106 Microcontroller
NXP Semiconductors
www.nxp.com

MSP430F1611 Microcontroller
Texas Instruments, Inc.
www.ti.com

RESOURCES
NXP Semiconductors, “LPC2104/2105
/2106: Single-chip 32-bit Microcon-
trollers; 128 KB ISP/IAP flash with
16/32/64 KB RAM,” LPC-2104_2105
_2106_6, 2006, www.nxp.com/pip/
LPC2106.html#datasheet.

J. Walker, “Extended Dump and Load
Utility,” www.fourmilab.ch/xd/.

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2007/206.

REFERENCES
[1] T. Dixon, “LPC210x ‘ARMee’

Development Board,” Elektor Elec-
tronics, April 2005.

[2] N. Goundry, “Why Unicode Won’t
Work on the Internet: Linguistic,
Political, and Technical Limita-
tions,” Hastings Research, Inc.,
2001, www.hastingsresearch.com
/net/04-unicode-limitations.shtml.

[3] M. Richards, “BCPL,” University
of Cambridge, www.cl.cam.ac.uk/
~mr10/BCPL.html.

Listing 4—This is the “main” function in Listing 3 in C-style syntax. As you can see, Pawn can look like C.

main()
{
const first_pin = 0;
const last_pin = 15;
new pin;

for (pin = first_pin; pin <= last_pin; pin++)
configpin(pin, Output);

pin = first_pin;
for (;;)

{
setpin(pin, 1);
delay(100);
setpin(pin, 0);
if (++pin > last_pin)

pin = first_pin;
}

}

Thiadmer Riemersma writes system
software and embedded software for
his company, CompuPhase, which is
located in the Netherlands. He holds a
B.Sc. in Precision Mechanics, which
comes in handy for the construction of
prototypes. In his spare time (and
sometimes during company time), Thi-
admer maintains the Pawn scripting
language and toolset. You may reach
him at thiadmer@compuphase.com.

2708018Riemersma.qxp 8/7/2007 9:12 AM Page 69

mailto:thiadmer@compuphase.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/206
http://www.hastingsresearch.com/net/04-unicode-limitations.shtml
http://www.cl.cam.ac.uk/~mr10/BCPL.html
http://www.nxp.com/pip/LPC2106.html#datasheet
http://www.fourmilab.ch/xd/
http://www.compuphase.com
http://www.keil.com
http://www.nxp.com
http://www.ti.com
http://www.circuitcellar.com

70 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

was the PCB artwork. I could load that
file into my version of Protel and work
with it. From the Protel database, you
could generate coordinates for each com-
ponent placed. The coordinates were in a
comma-separated value (CSV) file format.
And, this file could be loaded into an
Excel spreadsheet. The X,Y coordinates
could be manipulated to rotate and trans-
late all the placements. The order for
picking could also be changed. In general,
the contract manufacturer could easily
work with this Excel file.

But wait, it’s even more complicated.
The specific pick-and-place machines
used could hold many tape-and-reel parts
or many tube parts, but not lots of both.
Some parts could be mechanically cen-
tered using the pick jaws while others
need to be optically inspected and regis-
tered before placement. So, the parts were
divided among two machines. The first
machine placed the resistors and capaci-
tors (tape and reel parts) that needed only
mechanical centering, while the second
machine placed the ICs that needed opti-
cal checking before placement. By divid-
ing the work in this manner, two
machines were working on the build and
the placement rate was doubled.

The only other detail I need to
describe is that each pick-and-place
machine has multiple heads. So, you
need to specify which pick heads to use.
Also, all the like parts (say the 10-kΩ
resistors) are located at the same pick
location. So, you need to specify where
the pick location (source) of the part is as
well as the place (destination) location.

SOFTWARE
For this file-conversion project, I used

Sorry, I am not going to be discussing
theoretical physics. I hope you’re not
too disappointed. As you’ve learned C,
you’ve moved from an embedded sin-
gle-chip solution with a Texas Instru-
ments MSP430 to a much more power-
ful and fully integrated chip: Freescale
Semiconductor’s Coldfire family of
processors. With the smaller devices,
it’s unlikely that you would need all
the support that C has to offer for
string processing. And, the examples
you worked with sidestepped much of
the string issues. Well, this month you
will explore how C supports strings.

You will explore strings by writing a
program using C that runs on a PC and
converts an input file containing PCB
assembly information into a file that can
be used by a Philips pick-and-place
machine. This is a real program, and you
can use this design approach for any file-
conversion utility that you might need.

First, some background on this proj-
ect. I recently designed a PCB that had
many circuits repeated several times
each. The parts list consisted of about
130 different part numbers, but the PCB
contained more than 1,200 placements.
Also, the customer had five or 10 differ-
ent variations as to which of the 1,200
parts to place. The large amount of infor-
mation and the variations were sinking
the contract manufacturer in data.

DESIGN
I used Protel DXP to capture the design

and generate the schematics. The output
was a net list file, which was sent to the
company that did the artwork design.
They also used Protel (but an earlier ver-
sion). They returned a design file that

Borland’s C++ BuilderX. I still use Borland
Turbo C++ 3.0, but I thought it was time
to step up to a more modern toolset. I’m
not sure where or how I got my copy, but
cost was probably a deciding factor. It
looks like you can download free versions
(www.turboexplorer.com/homepage).
A high cost should not stop you from
trying C on your PC.

Now, note that this program we’re
creating is not a windows GUI solution.
The IDE development environment is
windows-based, but the application
you are going to write opens a DOS win-
dow, runs, and then closes that win-
dow. Nothing fancy here, just trying to
keep it a straightforward coding project.

PARAMETERS
I will start by talking about com-

mand-line parameters. In a DOS win-
dow, have you ever entered a com-
mand with options after that com-
mand? Perhaps “dir /od,” which lists
the directory contents in chronologi-
cal order or “copy file1.ext file2.ext.”
C supports passing to a program any
parameters contained on the line
when the program was activated. The
convention looks like this:

int main(int argc, char *argv[]);

argc is the number of parameters.
argv is an array of pointers to each of
those parameters. argv[0] is a string
containing the program’s name if
that’s available. As a review,
argv[argc] is a null pointer because
there are argc-1 parameters passed to
the program. And argv[1] is a point-
er to a text string that contains the

String Theory
George explores how C language supports strings. He wrote a program using C that runs
on a PC and converts an input file containing PCB assembly information into a file that can
be used by a Philips pick-and-place machine.

LESSONS FROM THE TRENCHES by George Martin

2709013Martin-.qxp 8/7/2007 9:14 AM Page 70

http://www.turboexplorer.com/homepage
http://www.circuitcellar.com

program location and name. If argc =
1, then the first parameter is at index =
0 (program name) and argv[1] is a
NULL pointer.

main() is supposed to return an inte-
ger reporting the status of the pro-
gram. EXIT_SUCCESS will be a
#define that you can find in the
header file XXXX.h.

The program supports three com-
mand-line parameters. They are “IN:”
(the input filename) “OUT:” (the out-
put filename), and “DBG:” (Debug
mode is on). In lines 157 to 173, in the
PlcCvrtMain.c file posted on the Cir-
cuit Cellar FTP site, you can see how I
extract the command-line parameters
(see Listing 1).

Note that I use the DBG command
line to force input and output file
names and set a variable debug = 1.
This is very useful when printing out
values while debugging. It can easily
be removed for “production.”

The loop looks at each of the argu-
ments in turn. Then, for each argu-
ment, it tests to see if it is one of the
supported names. This test is done
with the C function strncmp.

A character-by-character comparison

is performed:

#include <string.h>

int strncmp(const char *str1,

const char *str2, size_t count);

The strncmp() function compares
at most count characters of str1 and
str2. The return value is as follows:
less than zero means str1 is less than
str2; equal to zero means str1 is
equal to str2; and greater than zero
means str1 is greater than str2. If
there are less than count characters in
either string, then the comparison
stops after the first null termination.[1]

I used strncmp instead of strcmp,
so I could be sure the strings matched
exactly.

Note the commented out line
printf("argc %d = %s\n\r",i,
argv[i]);. This line was used to
help debug the command line parame-
ters. It uses C’s printf() function
(www.cppreference.com/stdio
/printf.html for one explanation).
Printf() sends a formatted string to
the standard output device (stdout).
Embedded systems probably don’t
have a standard output device. While

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 71

Listing 1—This is how I extracted the command line parameters.

for (i = 1; i < argc; i++) {
// printf(“argc %d = %s\n\r”,i,argv[i]);

if (strncmp(“IN:”, argv[i], 3) == 0) {
strcpy(InFileName,&argv[i][3]);
printf(“InFileName = %s\n\r”,InFileName);
Debug = 0;

}
else if(strncmp(“OUT:”, argv[i], 4) == 0) {
strcpy(OutFileName,&argv[i][4]);
printf(“OutFileName = %s\n\r”,OutFileName);
Debug = 0;

}
else if(strncmp(“DBG:”, argv[i], 4) == 0) {
printf(“Debug Mode On.\n\r”);
Debug = 1;

}
}

Listing 2—This is how I open the output file for writing.

// Open File for output
fp_output = fopen(OutFileName, “w”); // Write in Text mode
if (fp_output == NULL) { // could not open the output file

printf(“Output File Not Opened.\n\r”);
return(2); // error

}
printf(“Output File Successfully Opened.\n\r”);

Embedded DSP Hands-On
Workshops

Avoid confusing datasheets.

Rapidly learn to program, design
and debug your application.

Reinforce course concepts with
included development tools.

Let us help you accelerate your
design process. Visit:

www.dsp-workshops.com

2709013Martin-.qxp 8/7/2007 9:14 AM Page 71

http://www.cppreference.com/stdio/printf.html
http://www.dsp-workshops.com
http://www.circuitcellar.com
http://www.imagecraft.com
http://www.besthomeledlighting.com

ture containing pointers to functions
used to manipulate the device. You
can look up how to write device driv-
ers in Linux or Unix to see one imple-
mentation of streams. You’ll see tables
that look like Table 1. The routines in
the table are the routines available for
device manipulation and what the
stream pointer would point to.

CONVERSION
The first thing needed for the output

file is a standard heading. This head-
ing is the same for all boards
processed, and it consists of a
sequence of commands. I wrote that
heading data to the output file with
the statements in Listing 3.

The sprintf(outbuf,"PCBNAME=
DS1315 \n"); statement copies the
string delimited by the quotation
marks into the output buffer (outbuf),
while fputs(outbuf, fp_output);
sends that output buffer (outbuf) to the
output file (fp_output) stream. I could
have used an array of strings and a point-
er or index passing each string to the
output file, different approaches. In this
approach, the data is part of the code
while, as an array, the data is separated
and perhaps easier to support different
header information. I could do that as
another command line parameter.

Note that the \n character is a spe-
cial character. It’s the new line charac-
ter. There are several of these special or
nonprintable characters that will be
useful in your embedded systems work.

After the header information, I process
each line in the input file and make up an

on a PC running DOS, the DOS window
is the standard output device. When an
embedded system has an output, I use
the sprintf() function. That is the
same as printf(), but the output is
placed in a buffer and can be sent to
the port supported in the hardware.
Two very useful functions indeed.

The actual extraction of each
parameter is done in the following:

strcpy(InFileName,&argv[i][3]);

The statement copies the characters
starting at argv[i][3] (just past the
string “IN:”) until the null character is
reached into InFileName. And
InFileName is an array of characters
large enough to hold my parameters.
What if someone enters a parameter
that’s larger than the InFileName array?
Well, this program performs erratically.
By the way, that’s a technique used by a
number of the security attacks in an
attempt to gain access to a system. Note
that the code prints successful parame-
ters extracted from the command line
with the printf function.

The next operation the main loop
attempts is to open the input file for
reading and the output file for writing.

COMPILER
The C compiler I’m using has file I/O

routines. These can be very compiler and
environment dependent. That’s where
portability becomes a major headache for
developers. Writing one piece of code that
runs on Windows, Apple, and Linux
machines is difficult at best. The fopen
command in Listing 2 attempts to open
the output file for writing. If successful, a
pointer to the stream associated with that
file is returned. If an error occurs the null
pointer is returned. I next check for a suc-
cess file opening, and if there is an error, I
report it and exit the program. If suc-
cessful, I also report it and continue.

What is the stream associated with
that file? Well, I suspect it’s a struc-

72 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

Listing 3—This is a partial listing of the code used to write the standard header information to the output file.

sprintf(outbuf,”PCBNAME=DS1315 \n”);
(void) fputs(outbuf, fp_output);
sprintf(outbuf,”&B.COMMENT=/ /\n”);
(void) fputs(outbuf, fp_output);

Function Command
Load module InstallMyModule()

Open device OpenMyModule()

Read device ReadMyModule()

Write device WriteMyModule()

Close device CloseMyModule()

Remove module RemoveMyModule()

Table 1—These are device driver events and their
associated interfacing functions.

60 watt AC-DC Converter
One of the smallest footprints
in the world

AME60-Z series offers:
• Universal Input voltages of 90~260
• Output voltages of 5, 12, 15, 24V
• I/O isolation 3000VAC

Over 3,400 searchable Aimtec products
available at DComponents (802) 752-4321

DComponents.com

2709013Martin-.qxp 8/7/2007 9:14 AM Page 72

http://www.circuitcellar.com
http://www.dcomponents.com
http://www.affordabletestgear.com
mailto:shannon@circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 73

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2007/206.

George Martin (gmartin@circuitcellar.
com) began his career in the aerospace
industry in 1969. After five years at a
real job, he set out on his own and co-
founded a design and manufacturing
firm (www.embedded-designer.com).
George’s designs typically include servo-
motion control, graphical input and out-
put, data acquisition, and remote con-
trol systems. George is a charter mem-
ber of the Ciarcia Design Works Team.
He’s currently working on a mobile com-
munications system that announces
highway information. George is a
nationally ranked revolver shooter.

REFERENCE
[1] N. Kohl, “Standard C String and

Character: strncmp,” C/C++ Refer-
ence, www.cppreference.com/std
string/strncmp.html.

SOURCES
Protel DXP electronic design package
Altium
www.altium.com

C++ BuilderX IDE and Turbo C++ 3.0 IDE
Borland Software Corp.
www.borland.com

ColdFire microprocessor family
Freescale Semiconductor, Inc.
www.freescale.com

MSP430 Microcontroller
Texas Instruments, Inc.
www.ti.com

associated line in the output file. The
next step is to read the input file line by
line and separate each line into the differ-
ent fields. Lines 17 through 58 describe
the fields and their contents. Each field is
separated by space characters or end of
line. Not all fields are used, but all are
parsed. All of this starts on line 269. After
clearing out the array inbuf[], the call
to fgets reads data from the input file
until a new line character is read or until
IN_BUF_SIZE-1 characters are read. I
defined IN_BUF_SIZE to be 300, so we
should never read a line longer than 300
characters. If data is read, pass that data
to int ExtractFields(char*source).
And that procedure nulls out the fields
and calls int GetNext Field(char
*source, int *pos, char *Fld). Get
NextField accepts a starting position
and skips spaces until either data is found
or no more data is remaining. Its return
value signifies which is the case.

When you’ve reached the end of the
input line, process the input fields.
The first field is either a “Y” or an
“N” character. If it’s a “Y,” the input
line is processed (line 283 in the Plc-
CvrtMain.c file). Processing consists of
writing to the outbuf the formatted
string from line 290, appending to that
line a value based on Field[9] (refer to
line 293 in the PlcCvrtMain.c file posted
on the Circuit Cellar FTP), and then the
last Field[10] (line 300 in the PlcCvrt-
Main.c file). I don’t have the room to
describe all the formatting options avail-
able in the printf() or sprintf()
functions, but they are well document-
ed in the literature and on the web.

Notice all input fields are read, but not
all are sent to the output file. Also notice
how straightforward it would be to
change the function of this program if
the contents of the fields were to change.

The last step in the conversion
process is to exit the main procedure
when there is no more data to process.
Line 312 in the PlcCvrtMain.c file does
a return with a parameter of 0. This is
useful if you wrote a batch file to
process several input files at once. And
error returns could be handled in that
batch file. Don’t you just love DOS?

MOVING ON
Well, did you notice that I did not go

into a detailed explanation of each line

of C code as I presented this work? I
hope that as you read each of these
articles your working knowledge of
the C language is growing. If you’re
just jumping into this series of arti-
cles, I suggest you start from the
beginning as a review.

Three files are available on the Cir-
cuit Cellar FTP site. PlcCvrtMain.c is
the only C file in this project. TestIn.txt
is a test input data file. TestOut.txt is
the output of this program.

Next time I’ll focus on flash, flash,
and more flash. I

2709013Martin-.qxp 8/7/2007 9:14 AM Page 73

mailto:gmartin@circuitcellar.com
mailto:gmartin@circuitcellar.com
http://www.embedded-designer.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/206
http://www.cppreference.com/stdstring/strncmp.html
http://www.altium.com
http://www.borland.com
http://www.freescale.com
http://www.ti.com
http://www.circuitcellar.com
http://www.pololu.com/ads/cc

The oil companies have us over the
proverbial barrel. We are not in a posi-
tion to totally stop buying gas-guzzling
vehicles. Without an alternative, we are
at the whim of (sometimes daily) rising
pump prices. Can we blame the
automakers and oil companies for want-

ful even if it had had a green founda-
tion. Not that America would be any
closer to becoming the big green trans-
portation machine. Although change
might seem driven by customer
demand, it’s an excruciatingly slow
process.

74 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

What would Henry Ford have to
say about the advances in the automo-
bile industry if he were alive today?
While environmental impact was not
at the heart of Ford’s River Rouge
Plant (a self-sufficient automobile facto-
ry), Ford’s plan could have been success-

I-Zip Dashboard

FROM THE BENCH by Jeff Bachiochi

Jeff applies what you learned last month to design a display for his electric bicycle. The sys-
tem uses a LIN bus to present real-time information about your driving habits and fuel efficien-
cy. The system displays information such as voltage, current, slope, distance, and speed data.

Figure 1—The circuitry shown here adds an RS-232 interface to help debug the application. Also, support for an IrDA link (using a Microchip MCP2150 or an MCP2120) has
been added for future experimentation.

2709002-bachiochi2.qxp 8/7/2007 9:20 AM Page 74

http://www.circuitcellar.com

ing to continue mak-
ing profits while they
jockey for control of
our transportation
future? After all, our
country is based on
capitalism.

I don’t pretend to
have the answer. As
U.S. citizens, we elect
people to make deci-
sions for us (hopefully
in our best interests).
Although you may
vote, voter turnout is
disgustingly low in the
U.S. Have you ever
written or called any
of your local or state
representatives? Even
if you voted for “the
other guy,” you still have a right—no,
make that a responsibility—to be a part
of the decision process. While I don’t
like suggesting that our silence puts a
stamp of approval on bad decisions with
little constituent input, a lack of direc-
tion allows political action committees
(PACs) to have a great impact.[1] While a
PAC is not necessarily a bad thing, each
has its own agenda and may not be lob-
bying for your best interests. So, help
direct your country, or be satisfied liv-
ing in theirs.

Consumers have encouraged automo-
bile designers to provide increased safety
protection and a more comfortable inter-
nal environment. Many vehicles provide
feedback. In addition to providing speed
and distance data, some vehicles provide
real-time data about your driving habits
and how they are affecting fuel efficien-
cy. You see that when you put the pedal
to the metal, mpg suffers. The best fuel
economy is achieved when you treat the
gas pedal as though there is a raw egg
between it and your lead foot. Compass
or GPS circuitry can inform you of the

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 75

direction you are travelling, pinpoint
your position, or even tell you how to
get to the nearest Chinese restaurant. To
many, a vehicle is a home away from
home, and as such, most want their car
to have many of those comforts. They
include improved climate control, a
super audio or even video entertain-
ment center, and adaptable suspension
and braking systems.

Now that I’ve spent a number of
columns designing the basics for my
electric bicycle project, I want to do
something with the sensor data that has
been networked. Last month, I described
how to use a Palm device to monitor
internal registers in a microprocessor
with NS Basic. It’s time to apply it to a
project that will display data passing on
the local interconnect network (LIN) in
real time: a dashboard display, if you
will, using the tools previously discussed.

WHERE’S THE DATA FROM?
Up to this point, I’ve covered meas-

uring battery voltage (24-V gel cells),
electric motor current (brushed DC

motor), collecting data with a
USB thumb drive interface,
and measuring the slope of
the roadway (accelerometer)
and travel distance (optical
encoders). In “Local Intercon-
nect Network,” I discussed
the LIN bus (Circuit Cellar
201, 2007). Automotive manu-
facturers are moving to

include networks to simplify wiring
harnesses and ultimately decrease the
weight of vehicles. To keep my mis-
sion relative to this technology, I
chose the LIN bus as the communica-
tion medium for the electric vehicle
(bicycle) project. The protocol for the
LIN bus uses a format that requests or
provides data packets initiated by a
master node. A LIN message consists
of a header that provides the packet
structure and identifies who should
respond. The slave node completes the
frame with data and a checksum.
Because the master node is “in
charge,” it must schedule frame traf-
fic. In this project, the master is also a
slave node (node 0). A second slope
and distance module is node 1, and

Figure 2—LIN bus monitoring is handled by the Microchip PIC16F690 through the MCP201. The bit-banged serial to the Palm Visor attaches via J4.

Function 3-Byte data xx-Hexadecimal value
Voltage “Vxx” 00-FF (volts × 10)

Amperes “Axx” 00-FF (amps × 10)

Slope “Sxx” 00-7F (slope), MSBit = 1 (–slope)

Odometer “Oxx” 00-FF (link count)

Pedals “Pxx” 00-FF (link count)

Table 1—Monitored data is sent to the Palm display once per sec-
ond. The data is formatted into an ASCII string for readability.

Photo 1—This screenshot of the I-Zip Dashboard
shows all of the gauges and idiot lights active.
Although my Visor is monochrome, newer handhelds
have full-color screens.

2709002-bachiochi2.qxp 8/7/2007 9:20 AM Page 75

http://www.circuitcellar.com

76 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

the project’s bus monitor module is
node 2.

The first scheduled frame requests
data from node 0. The second frame
requests data from node 1. The sched-
ule calls for the frames to be repeated
every 1 s. Node 0 provides the volts
and amps data, and node 1 provides
slope and odometer data. This month’s
project is a silent node. By design, it
offers no data. It merely serves as a
LIN bus monitor and data repeater for
the Palm Visor display. I designed the
node with a microcontroller to referee
between the LIN data and the ASCII
data I wanted to transfer to the Palm.
Could the Palm handle the LIN data
directly? The Palm doesn’t have the
LIN-supported EUART hardware,
which is found in some microcon-
trollers, so I wasn’t willing to investi-
gate a potential dead end with an
impending deadline approaching.
Besides, passing ASCII data makes
debugging the Palm interface a lot
friendlier.

Using a microcontroller in the
design of this module also gave me a
chance to add other hardware I wanted
to eventually experiment with (see
Figures 1 and 2). You can see the
design has a couple of IrDA devices on
board, as well as an RS-232 interface
opening up a number of options, such
as an IrDA to RS-232 or Palm link.

The module will need the LIN rou-

tines to collect data.
A bit of conversion
prepares the data to
be retransmitted
using the bit-bang-
ing connection pre-
viously used to
introduce NS Basic
(J. Bachiochi,
“Graphical User
Interfacing,” Circuit
Cellar 205, 2007).
There will be some
differences in the
code since the origi-
nal LIN code was
written for
Microchip Technol-
ogy’s 18Fxxxx series
of microcontrollers
and the project uses
a PIC16F690 micro-

controller. The requirements for the
project include listening only to the
LIN bus and sending data to the Palm
device so the code is simplified.

Everything is based on LIN bus
activity. The LIN master polls slave
modules 0 and 1 every second. Slave
module 0 responds with the volts and
amps data. Slave module 1 responds
with slope, odometer, and pedals data.
Slave module 2 listens to the data traf-
fic. Upon receiving the data coming
from slave module 1, slave module 2
has all five pieces of data and formats
it for output to the Palm device (pre-
sumably this happens at the same
rate, once every second, per the LIN
schedule). The data is reformatted as
an ASCII string so it can be easily
viewed using any terminal program
(see Table 1). This makes debugging
much easier since you can read or
print what is being transmitted.

THE DASHBOARD
The whole idea was to use some-

thing that was inexpensive and easy
to program. We are all encouraged to
be “green” by making use of stuff that
is collecting dust, too good to throw
out, but no longer cutting edge. My
Palm Visor makes a great user I/O
device. Programming special applica-
tions with NS Basic is easy and afford-
able. I started this project by designing
what I wanted my dashboard to look

like. There are a number of objects on
the form in Photo 1. Other than the
button labeled “Trip Reset” and a nor-
mally invisible text field with the
word “Test,” each gauge is an object
created in its own little window.
These windows are modular and can
easily be moved around (to reconfigure
the display).

Since each window has its own
identity, commands used while a win-
dow is “in focus” are referenced in the
upper-left corner of that window. You
can reposition the window without
having to worry about what’s happen-
ing within the window. I use most of
the graphic commands in various win-
dows, including text, line drawing,
and bitmaps. The speedometer and gas
tank gauges are bar graphs made by
drawing open rectangles to represent
the graph and closed rectangles to
show an amount. Text below the
graph labels its function.

Two windows that can display (or
hide) bitmap images are in the lower
left. I created a couple of small images
with Microsoft Paint. They were
designed to act like idiot lights. A bat-
tery icon is displayed when the elec-
tric motor supplies power to the
motor. The pedals icon is displayed

Figure 4—Every “gauge” is treated as a separate
object (graphic window) on the application’s form.
Each object must be initialized (created) when the form
is opened (left-hand flow called from initialization). The
TIMER event can call individual objects (i.e., this slope-
display subroutine) to update the display (right-hand
flow called from Check4Cmd).

Sub
InitSlopeDisplay

Declare and
initialize variables

Create Window
“SlopeDisplay”

End sub

Sub SlopeDisplay
(Slope as float)

SlopeString =
Format(Slope, “-00.0”)

SetCurrent window
“SlopeDisplay”

–
EraseWindow

DrawRectangle (border)
DrawChars (SlopeString)

DrawChars (“Slope”)
DrawLine (slope profile)

End sub

Application,
initialization, and
communication
port selection

Set timer

Wait

Event

Timer
event?

Event exit

N

Any chars
in buffer?

First char =
0×0A (LF)?

Cmd = Cmd + Char

Call
Chk4Cmd

Set timer

Y

N

Figure 3—The “I-Zip Dashboard” is a single-form application filled with objects.
After the application’s form has been initialized, no action takes place until an
event occurs. If the TIMER was the cause of the event code being executed (it
could be something else, such as a button press), the serial buffer is checked for
data. If data exists, the first character in the buffer determines what will be done.

2709002-bachiochi2.qxp 8/7/2007 9:20 AM Page 76

http://www.circuitcellar.com

standard miles (and tenths) display.
This means that the odometer must
be converted from inches to feet,
miles, and tenths by another calcula-
tion in the display routine:

Electric motor power is easily calcu-
lated using volts × amps. The watts
gauge is real-time power, not accumu-
lated usage. My older caravan had an
information console that showed actu-
al MPG usage. This was informative
for revealing driving techniques that
increase and decrease MPG. I added a
miles per kilowatt-hour (MPK) gauge
as an indication of costs based on dis-
tance and watt-seconds. This is based
on the odometer value and the watts
value:

Of course, if you use only the ped-
als, this equation attempts to calcu-
late an infinite number and creates a
divide-by-zero error as the watts = 0.
Some checking here is done to display
a special value for MPK (999.99 in this
instance).

SERIAL COMMUNICATION
NS Basic provides a simple pro-

gramming language that lets you
write and download an executable
program to any handheld using the
Palm OS. With NS Basic, I can col-
lect, manipulate, and display data
with the Palm’s LCD. For this project,
the application boils down to one rou-

MPK
Distance miles

Power kilowatts

MPK

Odometer
feet

= ()
()

=
pper mile

Watts
1,000

MPK

Odometer
5,280

= =
×Watts

1,000

Odometer
Watts 52.8

Odometer Distance
Count

 1.6
12 per foot

 0.133

Pe

() = ′′
′′ () = ′

ddals Distance
Count

 4.8
12 per foot

 0.4

Tenths

() = ′′
′′ () = ′

oof a mile

Odometer
feet per mile

tenths

Tenths o

() =
()

ff a mile

Odometer
5,280

10
 Odometer

528
 () =

()
=

tion (like a log of all the
received commands), so
I’ll table this issue for
now. In the meantime,
the cumulative values
revert to zero if the
application is exited.

Here are a couple of
other areas of interest.
The gas tank is based on
the battery voltage. If
you remember, lead-acid
cells are considered dis-
charged at a voltage of
1.75 V per cell (i.e., 21 V
= 1.75 V × 12 cells) and
fully charged at 2.3 V
per cell (i.e., 27.6 V no
load). With a single byte
used to indicate battery
voltage, the highest volt-
age represented is 25.5 V,
with a nominal operat-
ing voltage of approxi-
mately 25.2 V. I used
two constants to repre-
sent the “full” voltage
and “empty” voltage of
the gas tank. The actual
voltage decay curve of

the battery is fairly linear (except at
the extremes), so the gauge level is a
reflection of the voltage measurement
within the two limits. I could have
added an idiot light with a picture of a
gas can to indicate a low warning, but
I chose not to.

The odometer and pedal values also
have constants associated with them.
Because the data merely counts the
number of chain links passing the sen-
sors, a constant is needed to convert
the counts into actual distance. Each
constant is determined by the chain’s
pitch, the rear gear’s tooth count, and
the rear tire’s circumference:

While the constants applied to the
counts give inches of travel (the actual
values are saved in the variables
odometer and pedals), that value is
not displayed. The gauge uses a more

Distance
Count

 Circumference
Teeth

Odometer Distance
Count

=

() 96
60

 1.6

Pedals Distance
Count

 96
20

 4.8

= ′′ = ′′

() = ′′ = ′′

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 77

when you apply force to the pedals.
The endearing term “idiot light”
comes from a single light on an auto-
mobile’s dashboard, which indicates a
serious (but vague) engine issue.

One gauge most vehicles do not
offer is an indication of slope. Since it
plays a major part in this project, I
wanted to not only indicate the meas-
ured slope, but also provide a visual
representation of it by drawing the
slope as a varying horizon. This is the
only data that is presented as a signed
value. Therefore, the slope is dis-
played as uphill (when positive) and
downhill (when negative).

The remaining gauges are mainly
text displays (except for drawn bor-
ders). With only five pieces of infor-
mation (volts, amps, slope, odometer,
and pedals), this application must cal-
culate data for a number of gauges.
The odometer and trip gauges are the
only cumulative display of data in this
project. I haven’t included the instruc-
tions to “remember” these values in
an associated file. There may be other
things I want to save in this applica-

Check4Cmd

Left(Cmd) = V?

Len(Cmd) = 17?

Volts = (Value of the
HEX characters in

Cmd)/10

Amps = (Value of the
HEX characters in

Cmd)/10

Slope = (Value of the
HEX characters in Cmd)

Cmd = “”

Return

Odometer = (Value of
the HEX characters in Cmd)

Pedals = (Value of the
HEX characters in Cmd)

Display volts, amps,
slope, odometer, trip, watts,

MPK, gas tank, and
speedometer

N

N

Y

Y

Figure 5—When the first character of string Cmd matches one of the com-
mands, the HEX data following the command character is evaluated. If the
new value (for the variable) has changed, a display routine is called to
update the display.

2709002-bachiochi2.qxp 8/7/2007 9:20 AM Page 77

http://www.circuitcellar.com

78 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

tine that retrieves and displays data.
The latest version of NS Basic
includes a “SerialEvent” function.
Unfortunately, my old Handspring
Visor does not support this function,
so I must use a timer and periodically
check for characters received in the
serial buffer.

Take a look at Figures 3, 4, and 5 to
get a feel for the program flow in this
application. Characters are removed
from the serial input buffer on a FIFO
basis. The character should be a com-
mand (capital letter), a hexadecimal
character, a carriage return <cr>, or a
line feed <lf>. If the character is not
an <lf>, then the character is added to
the Cmd string. If the character is an
<lf>, the Cmd string is evaluated for
data based on its length (which should
be 17 characters) and the first charac-
ter (which should be V). Separate rou-
tines extract the five values from the
Cmd string and update the appropriate
variables. For instance, if the begin-
ning of the Cmd string equals VFF, the
value 255 is used to update the vari-
able volts: volts = value/10, or in this
case volts = 25.5.

This application
receives data, reformatted
by the associated LIN
module, and updates its
application’s variables. A
change in the variable’s
value requires not only a
change to that specific
gauge on the display, but
also to the other objects
that may be dependent on
that data (i.e., watts =
volts × amps). It is up to
you to decide what infor-
mation should be updated
upon changed data.

IS THIS IT?
This project will be

taking a break here. Now
that the weather is
warm, I’m taking the
time to get the last mod-
ules mounted and the
whole system fully opera-
tional. I’ll wrap this up
after I put some miles on
the bike. Then I can give
a report on how well it

functions and what improvements
might have been made.

Using a Palm (like my Visor) for
user I/O makes a lot of sense. It will
be difficult to come up with a less
expensive touchscreen interface that
is so easily programmed. While
newer Palm devices offer a plethora
of interface possibilities (i.e., IR,
USB, and Bluetooth), the old standard
three-wire serial is still the easiest to
use. Sometimes I find it necessary to
write a small application like the
“Dashboard Data Generator” just to
help with the debugging process (see
Photo 2).

Although I opted to use a single
screen for the entire dashboard, I did
give some thought to a dashboard that
acts like a slideshow and displays each
full-screen gauge for a few seconds (in
round robin fashion). Also, with the
processing power of the Palm device,
values could be presented in various
formats (i.e., English and metric).

Since the Palm device has the
potential to send data back to the sys-
tem, the display could become more
integrated if slave module 2 (this

SOURCES
MCP201 LIN Transceiver, MCP2120
developer board, MCP2150 developer
board, and PIC16F690 flash-based
microcontroller
Microchip Technology, Inc.
www.microchip.com

NS Basic Programming Language
NS BASIC Corp.
www.nsbasic.com

Handheld Visor
Palm, Inc.
www.palm.com

Jeff Bachiochi (pronounced BAH-key-
AH-key) has been writing for Circuit
Cellar since 1988. His background
includes product design and manu-
facturing. He may be reached at
jeff.bachiochi@circuitcellar.com.

REFERENCE
[1] The Leadership Institute, “Busi-

ness and Association PAC Study,”
2005, http://pacstudy.leadership
institute.org.

Photo 2—I developed a small Liberty Basic program (inset) for my PC
that sends a string of data to the Palm through the serial port. With this
program, I can set any of the five data values to help debug the NS
Basic program running on the Palm.

month’s project) was designed to do
more than just listen on the LIN bus.
The module might pass requests back
from the display. A request might be a
simple task like turning the lights on
and off or something more intensive,
such as implementing “cruise con-
trol.” Hmm, cruise control on a bicy-
cle, that would be overkill, don’t you
think? But wait, the design is not
meant just for a bicycle. The bike just
happened to be a handy (and inexpen-
sive) platform to get started with. All
of this is applicable to bigger and
more useful transportation vehicles.
After a little experience with this
design, I’ll be setting my sights on
finding a road-worthy platform capa-
ble of passing the necessary Depart-
ment of Motor Vehicles inspections
for registration. I

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2007/206.

2709002-bachiochi2.qxp 8/7/2007 9:20 AM Page 78

mailto:jeff.bachiochi@circuitcellar.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/206
http://pacstudy.leadershipinstitute.org
http://www.microchip.com
http://www.nsbasic.com
http://www.palm.com
http://www.circuitcellar.com

www.keil.com800-348-8051

Only 4 Steps...
...are required to generate efficient, reliable

applications with the μVision IDE and

development tools from Keil.

Step 1. Select Microcontroller and

SpecifyTarget Hardware

Use the Keil Device Database () to find the

optimum microcontroller for your application.

In Vision, select the microcontroller to pre-configure tools and

obtain CPU startup code.

www.keil.com/dd

μ

Step 2. Configure the Device and

Create Application Code

The μVision Configuration Wizard helps you tailor startup code

to match your target hardware and application requirements.

Extensive program examples and project templates help you

jump-start your designs.

Step 3. Verify Program Execution with

Device Simulation

High-speed simulation enables testing

before hardware is available and helps you

with features like instruction trace, code

coverage, and logic analysis.

Step 4. Download to Flash and

Test Application

Once your application is runs

in simulation, use the Keil

ULINK USB-JTAG Adapter for

Flash programming and final

application testing.

Keil Microcontroller DevelopmentTools

help you create embedded applications quickly

and accurately. Keil tools are easy to learn and

use, yet powerful enough for the most

demanding microcontroller projects.

Components of Keil Microcontroller Development Kits

Keil makes C compilers, macro assemblers,

real-time kernels, debuggers, simulators,

evaluation boards, and emulators.

Over 1,200 MCU devices are supported for:

- 8051 and extended 8051 variants

- C166, XC166, and ST10

- ARM7, ARM9, and Cortex-M3

Download an evaluation version from

�

�

�

8-bit

16-bit

32-bit

www.keil.com/demo

81.qxp 12/5/2006 1:31 PM Page 1

http://www.keil.com/dd
http://www.keil.com/demo
http://www.keil.com

I would have written this column a
few months ago, but I must confess it
took me a while to get through
LaMothe’s 800-plus page book, Game
Programming for the Propeller-Powered
Hydra, which goes well beyond the
typical user guide or datasheet. The
entire kit, including the book, the
Hydra SBC, and a bunch of add-ons (e.g.,
keyboard, mouse, gamepad, cables, etc.)
is $199.95. Or you can get the book and
accompanying CD (many megs of
Propeller code) separately for $39.95.

Let me say at the outset that, despite
the title, LaMothe’s book isn’t just for
gamers. Although many of the chap-
ters and code examples have a game-
centric slant, much of what’s discussed
is generally applicable and serves as a
worthy supplement to Parallax’s own
Propeller documentation. But, even if
you’re not into games, take a moment

80 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

processing sounds good in principle,
but in the meantime, let’s just add
more cache and crank up the clock
rate.

Taking the easy way out worked for
a long time, but now it’s falling out of
favor. The era of the big-iron single
processor uber-chip is coming to an end
in the face of critical “hot-spot” power
issues and declining ROI for baroque
architectural trinkets like out-of-order
execution and speculation.

So, finally after all these years, par-
allel processing here we come, ready
or not. Since most folks fall into the
latter category, my inbox is filled with
announcements for conference papers
like “How To Think Algorithmically
In Parallel”[1] and “Concurrent
Programming for Modern
Architectures.”[2]

About a year ago, I covered the
Propeller chip from
Parallax (“Turning
the Core-ner,”
Circuit Cellar 193,
2006). With eight
20-MIPs processors
crammed onto a low-
priced chip ($12.95
quantity one), it’s
the first multicore
for the masses. This
month, let’s take a
look at one intrigu-
ing, and dare I say
fun, Propeller-based
design, André
LaMothe’s aptly
named Hydra (see
Photo 1).

Let me start this month by saying
I’m not really into playing video
games. Nothing personal, just a mat-
ter of other priorities competing for
my increasingly nonexistent spare
time.

That being said, I have nothing but
respect for the wizards who make mir-
acles happen under the hood. Video
games have always pushed the limits
of designers’ ingenuity to meet play-
ers’ seemingly insatiable demand for
faster and more realistic thrills and
spills.

As someone who grew up in an era
of computing limits, I appreciate that
game designers seem to be the last of
a shrinking pool of those who really
understand what’s going on inside the
box and aren’t afraid to get their hands
dirty optimizing every bit and cycle.

Which brings us to this month’s topic.
Let’s get into some old-school gaming
on some very new-school hardware.

8 HEADS BETTER THAN 1
Of course, when I’m talking about

“new-school” hardware, I’m talking
about the multicore chips that are all
the rage.

Keep in mind that the concept of
“parallel processing” isn’t new.
Practically since the dawn of comput-
ing, designers have wondered if there
was a way to combine “n” of the com-
puters they’ve got in hand already rather
than struggling to come up with a new
“n” times more powerful single CPU.

Nevertheless, until recently, the lat-
ter path was generally chosen as the
one of least resistance. Sure, parallel

Game On

SILICON UPDATE by Tom Cantrell

When the coding gets tough, the tough get coding. And the rest of us should be glad they
do. Recently, Tom turned to game expert André LaMothe to see how to teach new-school
hardware some old-school programming tricks. Are you game?

Photo 1—Based on the multiheaded Propeller chip, the aptly named Hydra SBC
is long on I/O interfaces, but short on extra chips. The idea is that with enough
MIPS on tap, in this case 160 peak MIPS for the 8 × 20 MIPS Propeller, soft-
ware can replace silicon.

2709003-cantrell.qxp 8/7/2007 9:21 AM Page 80

http://www.circuitcellar.com

81.qxp 8/7/2007 9:28 AM Page 1

http://www.ftdichip.com/chipshop.htm

82 Issue 206 September 2007 www.circuitcellar.comCIRCUIT CELLAR®

to read the first chapter (which is
Chapter “0” naturally), an informative
and entertaining review of the history of
video games going all the way back to
(and even predating) Pong (see Photo 2).

READ AND HEED
The book is divided into three major

parts. After a bit of housekeeping in
the form of software installation and a
“Quick Start” board checkout, the
first part covers the design of the
Hydra SBC itself with a chapter devot-

ed to each subsystem
and interface. The sec-
ond part, a full 250
pages, is devoted to
“Propeller Chip
Architecture and
Programming,” includ-
ing plenty of program-
ming examples. Only
the last part of the
book, “Game
Programming on the
Hydra,” is truly gam-
ing-centric. And even
if you aren’t into

games, keep in mind that the tech-
niques described are useful for any
application with game-like require-
ments (i.e., real-time, audio, video, etc.).

A fundamental premise of the
Propeller chip is that general-purpose
I/O pins coupled with fast and clever
software is the way to go versus the
traditional approach of dedicated I/O
functions hardwired in silicon. That
premise is certainly apparent with the
Hydra design. Take a close look at the
board and what you will find is a lot of

I/O connectors with very little beyond
the Propeller chip itself driving them.
The main exception is the USB inter-
face, where one of the popular FTDI
USB-to-serial adapter chips provides a
link to the standard Propeller develop-

Photo 3—Get down tonight and shake your booty with
one of the many circa ’70s demo games that’s included
with the Hydra kit. It’s more than fun and games though,
since the included source code and explanatory text
yield insights into clever programming techniques that
can equally serve “real” applications.

Photo 2—Check out this ’50s version of a “media center,” including what some
feel was the first “computer” (albeit analog) “video” (albeit using an oscillo-
scope rather than a CRT) game. In 1958, William Higinbotham of Brookhaven
National Laboratories crafted his Pong-like “Tennis for Two” game.[3]

2709003-cantrell.qxp 8/7/2007 9:22 AM Page 82

http://www.circuitcellar.com
http://www.elprotronic.com
http://www.linxtechnologies.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 83

pile and download an “Alien
Invaders-like” game to verify that
the software tools and PC link are
good to go. Now, with the ability
to drive the Propeller chip from
the on-board EEPROM, a plug-in
“cartridge,” or your PC, you’re
ready to rumble.

The next hundred pages
describe the functional blocks,
with a chapter devoted to each
one. Some of these chapters are
pretty short. After all, it’s hard
for even the most enthusiastic
wordsmith to say much about a
reset switch or debug LED.

The chapters describing the
more muscular features are
where the book really shines.
LaMothe manages to convey a

lot of information in a way that is
both short and sweet. For instance,
the chapter on NTSC video is only a
dozen or so pages and an easy, breezy
read. Yet it manages to fully convey
the essence of what’s actually a rather
complicated subject (in the words of
the author, “…one of the greatest
hacks in electronics history”). The
same goes for the chapters on VGA
and audio. Of course, I learned all this
stuff before—many times. I’ll keep
LaMothe’s book handy for the next
time I have to learn it again (and
again).

Many of the Hydra I/O functions
(including audio, video, keyboard, and
mouse) are the same as their counter-
parts on the Parallax development
board, which I covered in my earlier
column. Let’s spend a few moments
on the additions that are
unique to Hydra.

As shown in Figure 1, the
aforementioned “cartridge”
connector provides a handy
way to experiment with your
own add-ons. Both 3.3- and 5-V
power are supplied to the
board, as well as “loop” connec-
tions (i.e., 3VCC_LOOP and
5VCC_LOOP), which allow
Propeller software to deter-
mine that a cartridge has been
inserted. For talking to the car-
tridge, you’ve got a choice of
using a clock serial connection
(as the 128-KB EEPROM car-

ment tools (i.e., IDE, assembler, and
Spin language) running on a PC.

There’s also a 128-KB serial EEPROM
on the board that can boot up the
Propeller chip for stand-alone (i.e., PC
not connected) operation. The current
version of the Propeller chip uses only
the first 32 KB, but software could use
the rest for application-specific purpos-
es, such as nonvolatile settings, calibra-
tion, data logging, etc. In addition,
there’s a connector that accepts small
plug-in modules for memory or I/O
recalling the “cartridge” plug-ins of
vintage video games.

Speaking of which, the “Quick
Start” section in Chapter 1 has you
plug in a cartridge included in the kit
that’s preprogrammed with a circa
’70s “breakout-like” game (see Photo
3). Put on some disco music and relive
the days when companies like Atari
and Magnavox were household names.
There’s also a generic prototyping car-
tridge with holes on 0.1″ centers for
crafting your own add-ons. Late news:
I just found out there’s also a memory
expansion cartridge (with 128 KB of
EEPROM and 512 KB of SRAM) in the
works.

After a very brief introduction to
the Propeller chip and IDE, Chapter 1
culminates with the installation of
the FTDI USB chip virtual serial port
drivers and the Parallax tools on your
PC (both are included on the CD that
comes with the Hydra). The final pre-
flight check is to use the IDE to com-

tridge does) and/or eight parallel I/O
lines. Note that the latter are shared
with the VGA port, so you can use
them for I/O or VGA, but not both at
the same time.

You’ve also got access to the FTDI
chip (USB_TXD, USB_RXD) and some-
thing called “Hydra Net”
(NET_TX_DATA, NET_RX_CLK). The lat-
ter is a scheme that LaMothe came up
with on his own to connect Hydras to
each other. Nothing too formal about
it, really just a couple of I/O lines that
you can drive as you see fit with soft-
ware. For example, you could choose
to implement a full-duplex UART or a
half-duplex clock serial link. The Hydra
Net port includes network termina-
tion circuitry, so even when using
standard RJ-11 connectors and phone
wires, Hydra Net works at 256 kbps up
to 100 m away, and even higher speeds
(e.g., 2.5 Mbps) for short distances.

A game is nothing without a
gamepad, so in addition to a keyboard
and mouse, the kit also includes a Super
Nintendo Entertainment System (NES)
controller. The Hydra board has two of
the oddball NES connectors so you can
plug an extra controller in if you want
to go head-to-head with your friends.
After playtime is over, the gamepad
also makes for a handy general-pur-
pose input gadget and it’s easy to talk
to since the interface is just a shift
register (see Figure 2).

HEAD SPINNING
The second part of the book,

“Propeller Chip Architecture and
Programming,” is probably the most

Figure 2—The hardware interface to an NES gamepad is simple;
it’s just a three-pin (clock, data, shift/load) shift register. A
gamepad is a handy low-cost generic input device not necessarily
limited to just games.

Figure 1—The Hydra SBC has a simple “cartridge” expansion
connector and the kit includes one preprogrammed with a
game and one bare for experimenting with your own add-ons.

2709003-cantrell.qxp 8/7/2007 9:22 AM Page 83

news:I
news:I
http://www.circuitcellar.com

84 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

generally applicable. Starting with an
overview of the architecture, each reg-
ister and assembly language instruc-
tion is described both in words and
via simple examples. Going beyond
this usual fare, LaMothe shows no
fear in tackling some of the more eso-
teric capabilities of the chip.

For instance, the Propeller chip
doesn’t have the hardware multiplier
you typically find on a chip these
days. Of course, one option is the old
school “shift & add” software multi-
ply routine using the example code
provided in the book. But, as with
many other features of the chip,
Propeller offers a thinking-outside-
the-box option in the form of loga-
rithm-based math.

You probably know that logarithms
are a handy way to express large num-
bers with small ones. For instance,
the base 10 logarithm of one million
is six (i.e., 106 = one million). It turns
out logarithms have another cool fea-
ture, turning big-ticket multiplies and
divides into simple adds and sub-
tracts. In other words:

[1]

Let’s try it, using the example
LaMothe provides in his explanation
of the technique. Say you want to
multiply 100 times 1,000. The (base
10) log of 100 is 2 (i.e., 102 = 100) and
the log of 1,000 is 3 (i.e., 103 = 1,000).
So, multiplying 100 times 1,000 is
almost as simple as adding 2 and 3. I
say “almost” because you’ll presum-
ably want to convert the result back
to a regular number. Doing so calls for
a reverse “antilog” (exponentiation)
function (i.e., converting 105 to the
final answer, namely 100,000).

Of course, performing all these log
and antilog calculations isn’t a cake-

Log A B Log A Log B

Log A
B

 Log A Log B

×() = +

⎛
⎝⎜

⎞
⎠⎟

= −

walk, but Propeller has a trick up its
sleeve in the form of log and antilog
lookup tables built into on-chip ROM.
It’s true that the exact recipe for cook-
ing up some calculations using the
tables is pretty complicated and non-
intuitive. Fortunately, LaMothe gives
a most excellent and detailed explana-
tion culminating in listings of the
Propeller assembly language routines
that use the tables to convert (log) and
restore (antilog) 32-bit integers. FYI:
the pair of routines combined takes
about 2 μs with the Propeller running
at 80 MHz. While DSPs have nothing
to fear, that’s certainly not shabby. Oh
yeah, don’t forget that’s for just one of
the on-chip processors. There’s noth-
ing at all to prevent running the rou-
tines concurrently on all eight proces-
sors at the same time, cutting the

effective execution time by a
factor of eight (i.e., 250 ns).

Similarly, Propeller has a built-
in sine lookup table and LaMothe
provides a routine that uses it to
deliver decently accurate conver-
sions (resolution better than 0.05°)
in as little as 500 ns (at 80 MHz)
(see Listing 1). Once again, that’s
effectively 66.6 ns per conversion

(i.e., 500 ns/8) if you run it on all eight
processors at once. The scheme deliv-
ers the sine of 0° to 90° with 16-bit
accuracy and you can easily determine
the result for other quadrants (e.g.,
90–180, 180–270, and 270–360) by mir-
roring and flipping the lookup table in
software. As well, trigonometric identi-
ties can be used for related calculations
(e.g., cosine = sine (x + 90)).

Next, LaMothe turns his attention
to Spin, the unique interpreted lan-
guage Parallax has devised for the
Propeller chip. Like the earlier discus-
sion of the chip’s assembly language,
this section is very helpful because it
provides detailed explanations and
example code snippets for each of the
major language features.

He even dips a toe into the murky
waters of multiprocessing and parallel
programming, with helpful direction to
references as well as suitable precau-
tionary disclaimers.[4] A typical author
might just say the subject is complicat-
ed and could prove difficult to under-
stand. LaMothe puts it a bit more blunt-
ly when he says that you may “be
crushed by enormous gravitational
anomalies.”

Finally, it’s all pulled together with a

Listing 1—Sometimes a relatively small amount of memory can go a long way, especially given the inexorable
decline in cost/bit. Inside the Propeller, 4 KB are used for a sine lookup table, eliminating slow trig calculations
in favor of a fast table lookup.

‘ Get sine/cosine
‘
‘ quadrant: 1 2 3 4
‘ angle: $0000..$07FF $0800..$0FFF $1000..$17FF $1800..$1FFF
‘ table index: $0000..$07FF $0800..$0001 $0000..$07FF $0800..$0001
‘ mirror: +offset -offset +offset -offset
‘ flip: +sample +sample -sample -sample
‘
‘ on entry: sin[12..0] holds angle (0 to just under 360 degrees)
‘ on exit: sin holds signed value ranging from $0000FFFF (1) to

$FFFF0001 (-1)
‘
getcos add sin,sin_90 ‘ for cosine, add 90 degrees
getsin test sin,sin_90 wc ‘ get quadrant 2|4 into c

test sin,sin_180 wz ‘ get quadrant 3|4 into nz
negc sin,sin ‘ if quadrant 2|4, negate offset
or sin,sin_table ‘ or in sin table address >> 1
shl sin,#1 ‘ shift left to get final word address
rdword sin,sin ‘ read word sample from $E000 to $F000
negnz sin,sin ‘ if quadrant 3|4, negate sample

getsin_ret ‘ 39..54 clocks
getcos_ret ‘ variance is due to Hub sync on RDWORD
‘
‘
sin_90 long $0800
sin_180 long $1000
sin_table long $E000 >> 1 ‘sine table base shifted right
‘
sin long 0

Default tempo
Default note duration

Song title : d = 4, 0 = 5, b = 120 : 8c6, 4a6, d#

Name of the ringtone

Default octave

Notes
1/8 C note A scale
1/4 A note C scale
1/4 D# note B scale

Figure 3—Take advantage of standard RTTTL ringtones and
the kit’s “RTTTL Jukebox” code to give your embedded applica-
tion an audio makeover.

2709003-cantrell.qxp 8/7/2007 9:22 AM Page 84

http://www.circuitcellar.com

www.circuitcellar.com Issue 206 September 2007 85CIRCUIT CELLAR®

dead. The days of a plain (not to men-
tion obnoxious) beeper or buzzer may,
and should, be numbered.

I was further captivated by the
chapter titled “AI, Physics Modeling
and Collision Detection.” Sounds
pretty dry, but thanks to his fun and
friendly writing style (the chapter is
subtitled “A Crash Course”), LaMothe
manages to cover a lot of territory
from matrix processing, to state
machines, to genetic algorithms
somehow keeping it all connected and
coherent. It’s almost as though you
learn a lot without feeling like you’re
“working” hard enough.

At least read the chapter “Introduction
to Game Development.” Once again,
hidden behind the gaming facade is
some welcome and retro-refreshing
insight on the process of creating and
coding complicated applications.
Some may poo-poo all this as talk
about “toys,” but as LaMothe points
out, does anybody ever remember get-
ting a “blue screen of death” or
“please wait” on a video game? Fact of
the matter is that game designers
deserve respect for their ability to
deliver rock-solid real-time code that
wrings every MIPS to be had, and then
some, from the hardware.

Remember, all 800-plus pages of the
book are backed by many megs of
example code, tools, and documenta-
tion on the accompanying CD. And
yes, I did somehow manage to find
time to play—oops, I mean “work”—
with all the cool games, demos, and
utilities in the book’s culminating
‘”Hydra Demo Showcase” (see Photo 4).

GAME OVER
The idea of combining multiple

processors to gang up on an applica-
tion isn’t new. But, what is new is
that the time has come to actually do
it. That won’t be easy. Of course, we’ll
rely on the tools (compilers, OSs, etc.)
to try to find and exploit parallelism,
but the tools can only do so much
“automagically.”

Thus, expect more along the lines of
the aforementioned conference tutori-
als designed to teach old programmers
new parallel tricks. I imagine it won’t
be long before a “Parallel Processing
for Dummies” book hits the shelves

series of programming examples that
put the pedal to the metal with key
Propeller features, such as the built-in
video shifters and high-speed timers.
These examples demonstrate the use of
various libraries crafted by Parallax (e.g.,
TV, VGA, and graphics) as well as
LaMothe’s own routines for sound gen-
eration and gamepad interfacing. The
examples progress from the simplest
plot a pixel routine and head onward
and upward from there with line, tri-
angle, polygon, and text examples.

THEN PLAY ON
The final part of the book, “Game

Programming on the Hydra,” is under-
standably the most gaming-centric.
Those of you who, like me, aren’t
really into games might anticipate
this section wouldn’t be useful or
interesting. And it’s true some of the
more arcane aspects (e.g., sprite edi-
tors) have little to do with generic
embedded computing.

However, even if it is not especially
relevant it is all darn interesting! For
instance, in the chapter on “Sound
Design for Games,” I learned about
RTTTL, which stands for Ring Tones
Text Transfer Language. Nokia invented
this simple and efficient ASCII format
for defining ringtones and one of the
Hydra demos included with the kit is
an RTTTL jukebox (see Figure 3). This
got me thinking that embedded systems
in general could be served by a trend
towards higher fidelity and even user-
programmable sound effects. For sure,
I’d like a “ringtone” for our household
clothes dryer instead of the harsh indus-
trial-grade klaxon that could wake the

REFERENCES
[1] The 34th International Symposium

on Computer Architecture, San
Diego, CA, June 9 to 13, 2007,
www.cse.ucsd.edu/isca2007.

[2] ACM SIGPLAN 2007 Conference:
Programming, Language, Design,
and Implementation, San Diego,
CA, June 10 to 13, 2007, http://ties.
ucsd.edu/PLDI/index.shtml.

[3] Brookhaven National Laboratory,
“The First Video Game,” www.bnl.
gov/bnlweb/history/higinbotham.asp.

[4] B. Barney, “Introduction to Parallel
Computing,” Lawrence Livermore
National Laboratory, 2006,
www.llnl.gov/computing/tutorials/
parallel_comp.

Photo 4—Keep your eyes on the road and your hands
upon the wheel. “X-Racer” (by Hydra Demo Coders Team
members Jay T. Cook and Remi Veilleux) spins up the
Propeller with fancy 3-D graphics techniques, such as ray
casting and sprite scaling. Not bad for a chip that does
everything (graphics, video, audio, gamepad, and the
game itself) with just 64 KB of memory.

Tom Cantrell has been working on
chip, board, and systems design and
marketing for several years. You may
reach him by e-mail at tom.cantrell
@circuitcellar.com.

SOURCE
32360 Hydra game development kit
Parallax, Inc.
www.parallax.com

(subtitle: “A Step-By-Step Guide to
Non-Step-By-Step Thinking”).

My own feeling is that reeducating
the programming masses may not
only be difficult, but perhaps actually
unnecessary. Maybe a better approach
is to rely on wizards that “get it” to
do the heavy lifting (i.e., deal with the
hard-core parallel stuff) and let civil-
ian “step-by-step” programmers take
advantage of their work.

And so it is with Propeller. Even
though it’s a mini-me multicore, get-
ting the most out of Propeller calls for
getting way under the hood with clever
programming. And that’s just what
folks like André LaMothe, the Hydra
Demo Coder Team, and everyone con-
tributing to the “Object” Repository on
the Parallax web site are doing.

The best way to start solving the
parallel processing “problem”? Take
advantage of the work done by those
already solving it. I

2709003-cantrell.qxp 8/7/2007 9:22 AM Page 85

mailto:tom.cantrell@circuitcellar.com
http://www.cse.ucsd.edu/isca2007
http://ties.ucsd.edu/PLDI/index.shtml
http://www.bnl.gov/bnlweb/history/higinbotham.asp
http://www.llnl.gov/computing/tutorials/parallel_comp/
http://www.parallax.com
http://www.circuitcellar.com

86 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

IDEA BOX
THE DIRECTORY OF PRODUCTS AND SERVICES

AD FORMAT: Advertisers must furnish digital submission sheet and digital files that meet the specifications on the digital submission sheet.
ALL TEXT AND OTHER ELEMENTS MUST FIT WITHIN A 2" x 3" FORMAT. Call for current rate and deadline information. Send your disk and digital submission sheet
to: IDEA BOX, Circuit Cellar, 4 Park Street, Vernon, CT 06066 or e-mail adcopy@circuitcellar.com. For more information call Shannon Barraclough at (860) 875-2199.

The Suppliers Directory at www.circuitcellar.com/suppliers_dir/
is your guide to a variety of engineering products and services.

UUSSBB
Add USB to your next

project—it’s easier than you
might think!

USB-FIFO up to 8 mbps

USB-UART up to 3 mbps

USB/Microcontroller boards

pre-programmed with firmware

2.4GHz ZigBee™ & 802.15.4
RFID Reader/Writer

Absolutely NO driver software

development required!

www.dlpdesign.com

phyCORE® OEMable Single Board Computers

PHYTEC America, LLC � 203 Parfitt Way SW, G100 � Bainbridge Island, WA 98110 USA

XScale:XScale:XScale:XScale:XScale: PXA270, PXA255

ARM:ARM:ARM:ARM:ARM: LPC3180 (ARM9); LPC22xx, LPC229x, AT91 (ARM7)

PowerPC:PowerPC:PowerPC:PowerPC:PowerPC: MPC5554, MPC5200B, MPC565, MPC555

ColdFire:ColdFire:ColdFire:ColdFire:ColdFire: MCF5485

C 1 6 6 / X C 1 6 x / S T 1 0 / 8 0 5 1 CANCANCANCANCAN
x86x86x86x86x86::::: Elan SC520

www.phytec.com � (800) 278-9913 � www.phycore.com

Faster-to-Market: Save time by

integrating a PHYTEC Single

Board Computer Module into

your target circuitry.

Make -or - Buy: Why make

your own when you can buy

PHYTEC off-shelf solutions,

cost-effective to 1000s units/year?

Integrated Support Services: Let PHYTEC assist you in the design of your

end product: from tools and RTOSes to production. Our hardware is

bundled with leading compilers (Keil, IAR, CodeWarrior), RTOSes (WinCE,

Linux) and debuggers.

Immediate Support: Talk to PHYTEC technical staff with every call. No

waiting for answers.

Your OEM solution: With 20 years design, production, and integration

experience, PHYTEC is your OEM partner.

Blackfin:Blackfin:Blackfin:Blackfin:Blackfin: BF537

ib-206.qxp 8/6/2007 1:04 PM Page 86

mailto:adcopy@circuitcellar.com
http://www.circuitcellar.com/suppliers_dir/
http://www.dlpdesign.com
http://www.phytec.com
http://www.phycore.com
http://www.circuitcellar.com
http://www.taltech.com
http://www.teamfdi.com
http://www.ironwoodelectronics.com
http://www.steroidmicros.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 87

WWW.MYLYDIA.COM

MYLYDIA, INC.MYLYDIA, INC.
LLaayyoouutt GGeerrbbeerr,,

PPrroottoottyyppee MMaakkiinngg

QQUUIICCKK TTUURRNN
PPCCBB && TTuurrnnkkeeyy

@
TThhee BBeesstt PPrriicceess

Sales@mylydia.com

WWW.MYLYDIA.COM

Introduces
Capacitive Load Sensors with

True USB connectivity

Integrated signal conditioning
Digital USB or Analog 0-5 V output

Accuracies - 0.25% to 0.025% of FS
Rugged stainless steel construction

Temperature compensated
Easy mounting features built in

www.loadstarsensors.com
650.938.4282 | info@loadstarsensors.com

www.LinkInstruments.com 973-808-8990

www.LinkInstruments.com 973-808-8990

500 MSa/s

250 MSa/S (Dual channel) 512 Kpts
500 MSa/S (Single channel) 1 Mpts

Digital Oscilloscope

• 2 Channel Digital Oscilloscope
• 500 MSa/s max single shot rate

• Advanced Triggering
• Portable and Battery powered
• Only 9 oz and 7” x 3.5” x 1.5”
• FFT Spectrum Analyzer
• USB 2.0

$950

ib-206.qxp 8/6/2007 1:05 PM Page 87

mailto:Sales@mylydia.com
http://www.loadstarsensors.com
mailto:info@loadstarsensors.com
http://www.LinkInstruments.com
http://www.LinkInstruments.com
http://www.circuitcellar.com
http://www.canusb.com
http://www.earthlcd.com
http://www.stx104.com
http://www.rabbit-u.com
http://www.pcbcart.com
http://www.mcc-us.com
http://www.cAN232.COM
http://www.mylydia.com

88 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

ib-206.qxp 8/6/2007 1:05 PM Page 88

http://www.circuitcellar.com
http://www.technologicalarts.com
http://www.tri-plc.com/cci.htm
http://www.smxrtos.com/usb
http://www.arcturusnetworks.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 89

ABACOM
Technologies

ABACOMABACOM

ABACOM
Technologies

ABACOMABACOM

SAVE 5%SAVE 5%

ABACOM
Technologies

ABACOMABACOM

SAVE 5%

extend

100’s feet

tens miles

16IO-SSRT

ib-206.qxp 8/6/2007 1:05 PM Page 89

http://www.circuitcellar.com
http://www.bgmicro.com
http://www.scidyne.com
http://www.reachtech.com
http://www.abacomdirect.com
http://www.abacomdirect.com
http://www.abacomdirect.com
http://www.dcomponents.com
http://www.tern.com

90 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

High-speed USB 2.0 + Xilinx FPGA
Complete Software API

XEM3001:
� 400,000-gate FPGA
� Programmable PLL
� Over 80 I/Os
� 0.1” expansion headers
� Business-card size
� $199.95 / Qty 1
� $174.95 / Qty 10

XEM3010-1500P:
� 1,500,000-gate FPGA
� Programmable PLL
� Over 110 I/Os
� 32 MB SDRAM
� Configuration PROM
� 0.8-mm expansion
� $399.95 / Qty 1
� $349.95 / Qty 10

 FrontPanel Software API:
�Windows XP, Mac OS X, Linux � C/C++, Python, Java
� Configure FPGA and communicate with your design
� The easiest way to integrate USB into your product
� Use for image capture, control, test equipment, etc.
� Up to 38 MB/s transfer rate!

3.5“ x 2.0”
$199.95

75mm x 50mm
$399.95

Opal Kelly Visit us online at:

www.opalkelly.com

5% off with Coupon Code: CKTCLR73*

* Valid for first order only. Void 30-days after issue publication.

Mosaic Industries Inc.
tel: 510-790-1255 fax: 510-790-0925

www.mosaic-industries.com

QScreenTM - Low Cost
Versatile Instrument Controller

� Touchscreen Operated GUI
� 128x240 CCFL- Backlit Graphic Display
� Programmable in C or Forth
� Hundreds of Screens, Buttons, & Menus
� A/D and Two RS232/485 ports
� 8 Timer-Controlled Digital I/O Lines
� Up to 1 MB Flash, 512KB RAM
� Wide Selection of Plug-in I/O

$359/100s

Pioneer Hill Software
360 697-3472 voice
pioneer@telebyte.comPHS

SpectraPLUS 5.0
Audio Spectrum Analysis
Features
Sound Card based I/O
FFT sizes to 1048576pts, 1/96 Octave
Up to 24 bit, 200kHz sampling rates
3-D Surface and Spectrogram
Digital Filtering, Signal Generation
THD, IMD, SNR, Transfer Functions
DDE, Macros, Data Logging,
Vibration Analysis, Acoustic Tools

FREE 30 day trial!
www.spectraplus.com

ib-206.qxp 8/6/2007 1:05 PM Page 90

http://www.opalkelly.com
http://www.spectraplus.com
mailto:pioneer@telebyte.com
http://www.mosaic-industries.com
http://www.circuitcellar.com
http://www.intrepidcs.com
http://www.zanthic.com
http://www.ccsinfo.com/dspicc
http://www.smxrtos.com
http://www.frontpanelexpress.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 91

www.schmartboard.com

ANYONE
Can Now Easi ly

Hand Solder Surface-
Mount Components!

Even A 10
Year Old!

ib-206.qxp 8/6/2007 1:05 PM Page 91

http://www.schmartboard.com
http://www.circuitcellar.com
http://www.gridconnect.com
http://www.aagelectronica.com
http://www.ezpcb.com
http://www.jkmicro.com
http://www.allelectronics.com
http://www.picofab.net
http://www.pulsar-inc.com

92 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

DDevelopment Tools for PIC® Microcontrollers

microEngineering Labs, Inc. Phone: (719) 520-5323
Fax: (719) 520-1867

Box 60039
Colorado Springs, CO 80960

Order online at:
www.melabs.com

BASIC Compilers for PICmicro®

PICBASIC PRO™ Compiler $249.95

Easy-To-Use BASIC Commands
Windows 9x/Me/2K/XP Interface

PICBASIC™ Compiler $99.95
BASIC Stamp 1 Compatible
Supports most 14-bit Core PICs
Built-In Serial Comm Commands

Supports Microchip PIC10, PIC12, PIC14,
PIC16, PIC17, and PIC18 microcontrollers
Direct Access to Internal Registers
Supports In-Line Assembly Language
Interrupts in PICBASIC and Assembly
Built-In USB, I2C, RS-232 and More
Source Level Debugging

See our full range of products, including
books, accessories, and components at:

www.melabs.com

USB Programmer
for PIC® MCUs

With Accessories for $119.95:
Includes Programmer, Software, USB Cable,
and Programming Adapter for 8 to 40-pin DIP.

Pre-Assembled Boards
Available for 8, 14, 18, 28,
and 40-pin PIC® MCUs
2-line, 20-char LCD Module
9-pin Serial Port
Sample Programs
Full Schematic Diagram

Pricing from $79.95 to $349.95

PICPROTO™ Prototyping Boards
Double-Sided with Plate-Thru Holes
Circuitry for Power Supply and Clock
Large Prototype Area
Boards Available for Most PIC® MCUs
Documentation and Schematic

Pricing from $8.95 to $19.95

LAB-X Experimenter Boards

Parallel Port Programmer
starting at $59.95
Serial Port Programmer
starting at $79.95EPIC™

(as shown)
$89.95

RoHS
Compliant
Programs
PIC MCUs
including
low-voltage
(3.3V) devices

Includes
Windows
98, Me, NT,
2K, and XP
Software

SYSTRONIX®

 full details at www.TStik.com

 TStik is a ruggedized TINI400 chipset in the
familiar SIMM72 form factor. Upgrade most DSTINI1
(TINI390) systems or use our new TILT socket

boards (TILT Pro is shown above).
TStik is about $100, and sockets start at under $60.

TStik!tm

Rugged TINI Javatm Module

with 10/100 BaseT

ib-206.qxp 8/6/2007 1:06 PM Page 92

http://www.TStik.com
http://www.melabs.com
http://www.melabs.com
http://www.circuitcellar.com
http://www.tracesystemsinc.com
http://circuitcellar.wcscnet.com
http://www.cyberpakco.com
http://www.ontrak.net

1

3

4

5 6 7

8 9

10 11

12

13 14

15

16 17

18

2

www.circuitcellar.com CIRCUIT CELLAR® Issue 206 September 2007 93

CCRROOSSSSWWOORRDD

The answers are available at
www.circuitcellar.com/crossword.

Across
3. A circuit with an output that is proportion-

al to the derivative of the input. There are
two types of these circuits, active and pas-
sive.

5. A computer socket that links one device
with another

7. A semiconductor diode that detects light
and generates electrical current

10. A wireless communication specification
for PCs and other digital devices

12. A pen-like instrument used with a touch-
screen

15. In a battery or direct-current source, it is
the negative terminal. In a passive load, it
is the positive terminal.

16. A binary format of code unique to Java pro-
grams

18. The area where data and objects are stored
and held to be processed

Down
1. Electricity generated in response to applied mechanical strain. If

the material is not short-circuited, the applied strain induces a
voltage across it.

2. A depression on a planet or asteroid that’s formed by the impact of
a smaller object

4. Relating to stars or constellations
6. The outline of a program without language-specific syntax and real

programming statements. Although it cannot be executed, it can
enable a programmer to concentrate on the algorithms without
having to worry about the details of a specific language.

8. Use this type of testing to determine a system’s stability
9. A document that describes the characteristics of a component
10. This program’s only job is to load other software to enable an oper-

ating system to start
11. A strong flow of particles or fluid
13. An electronic document, often given with software, which con-

tains additional information about troubleshooting installation
problems and last-minute changes to the software

14. The American inventor (1938–present) who helped create the TCP.
In 1972 he moved to DARPA, and in October of that year, he
demonstrated the ARPANET by connecting 40 different computers
at the International Computer Communication Conference.

17. A technology that enables you to use virtual prototypes in place of
physical prototypes

crossword2.qxp 8/7/2007 9:33 AM Page 93

http://www.circuitcellar.com/crossword
http://www.circuitcellar.com

94 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

Signal Recovery: Restore the Attenuated Portion of an AC-Coupled Signal

Embedded Speech: Add Audio Capabilities to Small Applications

Simple Ethernet

The Monarch Butterfly: Build a Barometric Altimeter

Wireless Thermostat System

Resilience in Embedded Designs (Part 2): RS-485, Voltage Supervisors, Watchdogs, & Outputs

THE DARKER SIDE No Fear with FIR: Put a FIR Filter to Work

ABOVE THE GROUND PLANE Hearing Clearly: Hardware

FROM THE BENCH RoboGrowth

SILICON UPDATE I Sense, Therefore I Am

91 AAG Electronica, LLC

45 ASIX s.r.o.

89 Abacom Technologies

9 Ad Hoc Electronics

72 Affordable Test Gear

72 Aimtec – DComponents

91 All Electronics Corp.

87 Apex Embedded Systems

88 Arcturus Networks

7 Atmel

89 BG Micro

71 BestHomeLEDLighting

49 Bitscope Designs

65 CWAV

22 CadSoft Computer, Inc.

17 Comfile Technology, Inc.

90 Custom Computer Services, Inc.

92 CyberPak Company, Inc.

1 Cypress Microsystems, Inc.

86 DLP Design

71 DSP Workshops

45 Decade Engineering

48 EMAC, Inc.

87 Earth Computer Technologies

28 Efficient Computer Systems

The Index of Advertisers with links to their web sites is located at www.circuitcellar.com under the current issue.
Page

82 Elprotronic

9 e-PCB

20 ExpressPCB

48, 91 ezPCB

86 FDI-Future Designs, Inc.

81 FTDI Chip

90 Front Panel Express, LLC

87 General Circuits, Inc.

64, 91 Grid Connect

55 HI-TECH Software LLC

71 IMAGEcraft

86 Intec Automation, Inc.

90 Intrepid Control Systems

57 Intronix Test Instruments, Inc.

86 Ironwood Electronics

64, 91 JK microsystems, Inc.

30 Jameco

45 Jeffrey Kerr, LLC

79 Keil Software

61 LabJack Corp.

61 Lakeview Research

87 Lawicel AB

23 Lemos International

2, 87 Link Instruments

82 Linx Technologies

87 Loadstar Sensors, Inc.

87 MCC (Micro Computer Control)

50 Maxstream

88, 90 Micro Digital, Inc.

47 Microchip

92 microEngineering Labs, Inc.

90 Mosaic Industries, Inc.

32 Mouser Electronics

87 Mylydia, Inc.

5 NKK Switches

C2 NetBurner

3 Noritake Co., Inc.

61 Nurve Networks LLC

92 Ontrak Control Systems

90 Opal Kelly Inc.

66 PCB East Design Conf.

33 PCB-Pool

C4, 31 Parallax, Inc.

86 Phytec America LLC

91 Picofab, Inc.

90 Pioneer Hill Software

73 Pololu Corp.

91 Pulsar, Inc.

34 R4

39, 50 Rabbit Semiconductor

Page Page Page

87 Rabbit Semiconductor

89 Radiotronix – DComponents

89 Reach Technology, Inc.

15, 95 Renesas Technology

56 SoC Conference

91 Schmartboard

89 Scidyne

16 Sealevel Systems

25 SEGGER Microcontroller Systems LLC

29 Silicon Laboratories, Inc.

92 Systronix

86 TAL Technologies

C3 Tech Tools

40, 41 Technologic Systems

88 Technological Arts

89 Tern, Inc.

8 Tibbo Technology, Inc.

92 Trace Systems, Inc.

88 Triangle Research Int’l, Inc.

92 WCSC (Willies Computer Software Co.)

21 Wiznet

13 Wiznet iEthernet Design Contest 2007

90 Zanthic Technologies, Inc.

November Issue 208
Deadlines

Space Close: Sept. 12
Material Close: Sept. 18

Theme:
Analog Techniques

ATTENTION ADVERTISERS

Call Shannon Barraclough
now to reserve your space!

860.875.2199
e-mail: shannon@circuitcellar.com

INDEX OF ADVERTISERS

Preview of October Issue 207
Theme: Signal Processing

94-advertiser's index.qxp 8/7/2007 9:35 AM Page 94

http://www.circuitcellar.com
mailto:shannon@circuitcellar.com
http://www.circuitcellar.com

Renesas — the #1 supplier of microcontrollers in the world — is launching Renesas
University, an exciting educational program that gives educators a way to teach
microcontroller (MCU) technology using a modern architecture and professional-
grade tools. It also offers many valuable resources that help students learn about
MCUs and how they can be applied in significant embedded system designs.

The Renesas University program nurtures an online
community where educators and students come
together to share ideas, address technical issues and
discuss microcontroller topics. It is characterized by:

Publish � Renesas actively encourages academics and
students to publish microcontroller-related papers.
We provide assistance in publishing course material
and microcontroller related books.

Toolchain � The Renesas integrated development
environment with toolchain is the commercial version
of our development tools – with full C compiler,
assembler, linker, and debugger. It is not a typical
capability-reduced “educational” version. The only
limitation is a 64KB code size after 60 days of use.

Modern � Renesas microcontrollers utilize a modern
architecture designed specifically for C and other
high-level languages. Our devices handle the most
demanding applications of today and tomorrow.

Renesas is a worldwide
leader in:

� Microcontrollers

� Embedded flash
microcontrollers

� MCUs in car
navigation systems

� Power amplifiers for
GSM phones

� LCD controllers for
color mobile displays

Educators and Students:

Register Today
to Receive Exciting

Microcontroller Resources!

Renesas Starter Kits
provide a USB-powered, MCU-based system
board with in-circuit debugger/flash memory
programmer. They include a CD containing
our integrated development environment
with toolchain, plus documentation, example
firmware and interesting projects.
� Free for Educators: Register at the Renesas

University website to receive ten free Starter
Kits per semester. In return, we request the
submission of material that enriches Renesas
University; i.e., code, student projects, techni-
cal papers, embedded control designs, etc.

� Low cost for Students: If actively enrolled in
an educational institution, a Starter Kit can be
purchased at a very low cost after registering
at the Renesas University website.

Complete Development Kits

For more information on Renesas University and how to enroll, please visit
www.renesasuniversity.com or email: University@rta.renesas.com

© 2007 Renesas Technology America, Inc. Renesas Technology America, Inc. is a wholly owned subsidiary of Renesas Technology Corp.

Visit us at ESC Boston!
Booth #1209

95.qxp 8/7/2007 9:37 AM Page 1

http://www.renesasuniversity.com
mailto:University@rta.renesas.com

96 Issue 206 September 2007 CIRCUIT CELLAR® www.circuitcellar.com

As I’ve mentioned before, I’ve been trying to clean up my act regarding energy consumption rather than just looking at solar PV as a solution
to overconsumption. At the very least, I’ve been looking to see where all this power is being used so that I can economize where applicable. Last
month, I commented on my efforts at reducing some of the energy I consume for lighting by adding more CFLs and new AC-powered LEDs.

The irony of specifically looking at my energy costs is that it got me thinking about how I’m spending so much other money living in our com-
munications-saturated world. The reality may be that a few bucks saved on my electric bill are just a drop in the bucket compared to the hidden
expenses of all the other communication and information-related products and services I use. Certainly, environmental considerations are high
on the list of reasons for installing a home PV electric system, but, if we’re comparing apples to apples about schemes for saving money each
month, and for about $60,000 out-of-pocket less, I could save just as much as generating my own electricity if I merely threw out my cell phone
or ripped the DIRECTV antenna off the roof. How many more subscription fees do I have that offer equivalent savings?

Yeah, I know that on face value it’s a ridiculous comparison, but it got me thinking about subscription expenses in general—and, I have a con-
fession to make. Before explicitly looking into it for this editorial, I doubt I could tell you exactly what they were with any accuracy.

It’s sort of like your computer system. There was a time when you bought a computer and installed programs that did exactly what you want-
ed. The programs you bought were discrete and operated independently with no extra charges. Today, they call it feature enhancement, but the
end result is a plethora of interactive and interdependent bloatware, installed in the tiniest handheld to the largest desktop, that all seem to require
constant maintenance and endless communication-company subscription payments to actually work as described. In fact, I almost lost my cool
when the Verizon dealer told me that after paying $350 for a new RAZR phone (when they first came out) I’d also have to subscribe to Verizon’s
$5/month cell phone e-mail service if I wanted to actually see the pictures anywhere except on the phone! You’ve got to be kidding.

Absurdities like this hide a greater problem in today’s high-tech environment—chronic subscription overdose (CSO). Virtually everything we
do these days involves some monthly or yearly subscription fee. Corporate America has discovered that the recurring revenues generated from
small subscription “pin pricks” create large total revenues but, more importantly, a contract-secured customer base. It’s only because we add these
obligations incrementally and each seems to be just another small fee that we don’t consider them sinister. Add up all the communications-relat-
ed services and subscriptions and you will find a classic case of CSO.

I think I lead a rather low-profile existence in our media-overkill world. Everyone seems to have as much text messaging, streaming TV, data
and picture exchange, and expensive cell-delivered life fulfillment as battery capacity allows. I just want to make a simple telephone call and don’t
bother me with the other stuff—obviously no expensive extravagances there.

Still, I’m a very bad boy when it comes to all the rest of my communication purchases and it was shocking to add it all up. While some might
find it curious that I have no online subscriptions at all, the 30 print magazine and four newspaper subscriptions still add up to $1,100 a year.
Combine that with four landlines at home, one at the cottage, and two full-time fixed-IP-address DSL lines and you get the picture. In fact, because
I have so many uploading devices, I pay $90/month for high-speed DSL at home (which still seems like a snail’s pace compared to what I’d really
like to have).

When I look at the communication bills, I admit that my real communication vices are television and satellite subscriptions. Even though I’ve
never purchased a pay-per-view program, my DIRECTV bill is $145/month. Satellite TV or not, I also have cable TV at another thousand dollars
a year. And, while I don’t walk around with an MP3 appendage like many people these days, I do seem to have satellite radio in the house and
in every car where I am. They would have all been XM, but due to exclusive satellite radio deals with some car brands, I get to pay for both XM
and Sirius to the tune of $676 a year! To add insult to injury, literally speaking, if I want the BMW Assist (similar to OnStar) to call for help when
I rear-end somebody while trying to tune Sirius via my iDrive, it’s another $240 a year, and it’s only for that car!

We’ve all become accustomed to these gadgets and services, but it takes adding them up to realize an insidious case of CSO. In my situa-
tion all these little pin pricks added up to $10,098 a year, and this is probably still low compared to many of you. Obviously, any real solution
requires a lifestyle change, which in my case, I assure you, will be a hard sell. In the meantime, and more importantly, I guess this exercise points
out that no one will ever believe that I’m installing a PV system to save money on my electricity.

Chronic Subscription Overdose

PPRRIIOORRIITTYY IINNTTEERRRRUUPPTT

steve.ciarcia@circuitcellar.com

by Steve Ciarcia, Founder and Editorial Director

steve_206_edit_ver2.qxp 8/7/2007 9:43 AM Page 96

mailto:steve.ciarcia@circuitcellar.com
http://www.circuitcellar.com

C3.qxp 3/30/2007 1:38 PM Page 1

http://www.tech-tools.com

C3.qxp 8/6/2007 12:09 PM Page 1

http://forums.parallax.com
http://www.parallax.com/propeller

